Theoretical guarantees in KL divergence for Diffusion Flow Matching

Gentiloni-Silveri M., Conforti G., Durmus A.

38th Conference on Neural Information Processing Systems

Gentiloni-Silveri M., Conforti G., Durmus A. [Theoretical guarantees in KL for DFMs](#page-8-0) NeurlPS 2024 1/7

Diffusion Flow Matching (DFM) in Brief

Goal:

Generate new data $x \sim \nu^\star \in \mathcal{P}(\mathbb{R}^d)$ by learning from existing ones and leveraging a base distribution $\mu \in \mathcal{P}(\mathbb{R}^d).$

Diffusion Flow Matching (DFM) in Brief

Goal:

Generate new data $x \sim \nu^\star \in \mathcal{P}(\mathbb{R}^d)$ by learning from existing ones and leveraging a base distribution $\mu \in \mathcal{P}(\mathbb{R}^d).$

Strategy:

- Build a **Stochastic Interpolant** to interpolate between ν^* and μ ;
- Build a Markovian Approximation to simplify the structure.

Figure: Figure 1 in (Alberto et al., 2023)

Albergo, Michael S and Boffi, Nicholas M and Vanden-Eijnden, Eric (2023) Stochastic interpolants: A unifying framework for flows and diffusions. In arXiv preprint arXiv:2303.08797. (□) (何) (三 Ω

Gentiloni-Silveri M., Conforti G., Durmus A. [Theoretical guarantees in KL for DFMs](#page-0-0) NeurlPS 2024 2/7

Stochastic Interpolant

Definition:

The stochastic interpolant between μ and ν^\star is process $(X^{\text{I}}_t)_{t\in[0,1]}$ s.t.

 $(X_0^{\rm I},X_1^{\rm I})\sim \pi\in \Pi(\mu,\nu^\star)\ ,\ (X_t^{\rm I})_{t\in [0,1]} |(X_0^{\rm I},X_1^{\rm I})\sim {\rm b}\mathbb{B}((X_0^{\rm I},X_1^{\rm I}),\cdot)\ ,$

with $\Pi(\mu, \nu^\star)$ set of couplings between μ and ν^\star and $\mathrm{b}\mathbb{B}((x_0, x_1), \cdot)$ Brownian bridge between $x_0, x_1 \in \mathbb{R}^d$.

Remark:

It evolves accordingly to

 $dX_t^{\text{I}} = 2\nabla \log p_{1-t}(X_1^{\text{I}}|X_t^{\text{I}})dt +$ √ $\overline{2} \mathrm{d} B_t$, $t \in [0,1]$, $X_0^{\mathrm{I}} \sim \mu$,

with $(s, x, y) \mapsto p_s(x|y)$ heat kernel.

イロト イ押 トイヨ トイヨ トーヨー

Markovian Projection

Definition:

The Markovian projection of the stochastic interpolant is the Markovian process $(X_t^{\mathrm{M}})_{t\in[0,1]}$ such that

$$
(X_t^{\mathrm{M}})_{t\in[0,1]} \; \; : \; X_t^{\mathrm{M}} \stackrel{\mathrm{dist}}{=} X_t^{\mathrm{I}} \; , \; \forall \; t\in[0,1] \; .
$$

 \rightarrow \equiv \rightarrow

 $\left\{ \left| \left| \left| \left| \left| \Phi \right| \right| \right| \right| \right\} \right\}$ $\left| \left| \left| \left| \left| \left| \Phi \right| \right| \right| \right| \right\}$

4 0 8

Markovian Projection

Definition:

The Markovian projection of the stochastic interpolant is the Markovian process $(X_t^{\mathrm{M}})_{t\in[0,1]}$ such that

$$
(X_t^{\mathrm{M}})_{t\in[0,1]} \; : \; X_t^{\mathrm{M}} \stackrel{\mathrm{dist}}{=} X_t^{\mathrm{I}} \; , \; \forall \; t\in[0,1] \; .
$$

Key point: [Corollary 3.7 in (G. Brunick and S. Shreve, 2013)] $(\mathcal{X}^{\mathrm{M}}_t)_{t\in[0,1]}$ is a solution to the Markovian SDE

> $dX_t^M = \tilde{\beta}_t(X_t^M)dt +$ √ $\overline{2} \text{d}B_t$, $t \in [0,1]$, $X_0^{\text{M}} \sim \mu$,

with drift $\widetilde{\beta}_t(\mathsf{x}) = \mathbb{E}[2 \nabla_{\mathsf{x}} \log p_{1-t}(X_1^{\mathrm{I}} | X_t^{\mathrm{I}}) | X_t^{\mathrm{I}} = \mathsf{x}].$

G. Brunick and S. Shreve (2013). Mimicking an Itô process by a solution of a stochastic differential equation. In The Annals of Applied Probability.

KEL KALIKI II YA ALIKI

Draft Idea: To match ν^* , we run the SDE satisfied by the Markovian projection of the stochastic interpolant.

Algorithm 1 Draft algorithm

- 1: Input: μ .
- 2: Step 1: Initialize $X_0^{\text{M}} \sim \mu$.
- $3:$ Step 2: Compute

$$
dX_t^M = \tilde{\beta}_t(X_t^M)dt + \sqrt{2}dB_t, \quad t \in [0,1].
$$

4. Output: Law $(X_1^{\text{M}}) = \nu^*$.

DFM algorithm

Key Idea: To approximate ν^{\star} , we run the Euler–Maruyama scheme for the estimated mimicking drift (via neural networks).

Algorithm 1

- 1: **Input:** μ , $\{0 = t_0 < t_1 < \cdots < t_N = 1\}$.
- 2: Step 1: Initialize $X_0^* \sim \mu$.
- 3: Step 2: For each $k = 0, ..., N 1$:
- Approximate $\tilde{\beta}_{t_k}(x)$ using $s_{\theta^*}(t_k,x)$. $4:$
- Compute the update: $5:$

$$
dX_t^* = s_{\theta^*}(t_k, X_{t_k}^*)dt + \sqrt{2}dB_t, \quad t \in [t_k, t_{k+1}].
$$

6: Output: $\nu_1^{\theta^*} := \text{Law}(X_1^*).$

 QQQ

 $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

Non-Asymptotic Guarantees for DFM Models

- **1** Consider a uniform grid ${kh}_{k}$ for discretizing time and assume the mimicking drift is estimated with precision $\varepsilon^2.$
- $\bullet\,$ Further assume that μ , ν^\star , and the score functions associated with μ , ν^{\star} , and π (*i.e.* ∇ log(d \cdot /dLeb)) have finite 8th-order moments.

Theorem 2 in (Gentiloni-Silveri et al., 2024)

Under these conditions, the Kullback-Leibler (KL) divergence between the output distribution and the target is bounded by:

 $\mathsf{KL}(\mathsf{output} || \nu^\star) \leq \epsilon_{\mathsf{estimation}} + \epsilon_{\mathsf{discretization}}$

where $\epsilon_{\text{estimation}} = \varepsilon^2,\, \epsilon_{\text{discretization}} = h(h^{1/8}+1)(d^4+8\text{th-order-moments}).$

Gentiloni-Silveri M, Conforti G. Durmus A. (2024) Theoretical guarantees in KL for Diffusion Flow Matching. In The Thirty-eighth Annual Conference on Neural Information Processing Systems. QQQ