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Diffusion Flow Matching (DFM) in Brief

Goal:

Generate new data x ∼ ν⋆ ∈ P(Rd) by learning from existing ones
and leveraging a base distribution µ ∈ P(Rd).

Strategy:

Build a Stochastic Interpolant to interpolate between ν⋆ and µ;

Build a Markovian Approximation to simplify the structure.

Figure: Figure 1 in (Alberto et al., 2023)

Albergo, Michael S and Boffi, Nicholas M and Vanden-Eijnden, Eric (2023)
Stochastic interpolants: A unifying framework for flows and diffusions. In
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Stochastic Interpolant

Definition:
The stochastic interpolant between µ and ν⋆ is process (X I

t )t∈[0,1] s.t.

(X I
0,X

I
1) ∼ π ∈ Π(µ, ν⋆) , (X I

t )t∈[0,1]|(X I
0,X

I
1) ∼ bB((X I

0,X
I
1), ·) ,

with Π(µ, ν⋆) set of couplings between µ and ν⋆ and bB((x0, x1), ·)
Brownian bridge between x0, x1 ∈ Rd .

Remark:
It evolves accordingly to

dX I
t = 2∇ log p1−t(X

I
1|X I

t )dt +
√
2dBt , t ∈ [0, 1] , X I

0 ∼ µ ,

with (s, x , y) 7→ ps(x |y) heat kernel.
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Markovian Projection

Definition:
The Markovian projection of the stochastic interpolant is the Markovian
process (XM

t )t∈[0,1] such that

(XM
t )t∈[0,1] : XM

t
dist
= X I

t , ∀ t ∈ [0, 1] .

Key point: [Corollary 3.7 in (G. Brunick and S. Shreve, 2013)]
(XM

t )t∈[0,1] is a solution to the Markovian SDE

dXM
t = β̃t(X

M
t )dt +

√
2dBt , t ∈ [0, 1] , XM

0 ∼ µ ,

with drift β̃t(x) = E[2∇x log p1−t(X
I
1|X I

t )|X I
t = x ].

G. Brunick and S. Shreve (2013). Mimicking an Itô process by a solution of a
stochastic differential equation. In The Annals of Applied Probability.
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A first draft for DFM

Draft Idea: To match ν⋆, we run the SDE satisfied by the Markovian
projection of the stochastic interpolant.
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DFM algorithm

Key Idea: To approximate ν⋆, we run the Euler–Maruyama scheme for
the estimated mimicking drift (via neural networks).
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Non-Asymptotic Guarantees for DFM Models

1 Consider a uniform grid {kh}k for discretizing time and assume the
mimicking drift is estimated with precision ε2.

2 Further assume that µ, ν⋆, and the score functions associated with µ,
ν⋆, and π (i .e. ∇ log(d · /dLeb)) have finite 8th-order moments.

Theorem 2 in (Gentiloni-Silveri et al., 2024)

Under these conditions, the Kullback-Leibler (KL) divergence between the
output distribution and the target is bounded by:

KL(output||ν⋆) ≤ ϵestimation + ϵdiscretization

where ϵestimation = ε2, ϵdiscretization = h(h1/8+1)(d4+8th-order-moments).

Gentiloni-Silveri M, Conforti G. Durmus A. (2024) Theoretical guarantees in
KL for Diffusion Flow Matching. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.
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