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Introduction

Goal: Select the features associated with the linear response Y , given the
covariate design matrix X , with controlled false discovery rate (FDR)
under the Model-X knockoff framework1

Challenges: Unknown data distribution and small sample size

Approach: Deep generative models have been used for knockoff
generations for non-Gaussian data

Deep Knockoff2, KnockoffGAN3, sRMMD4, and DDLK5

Performance declines as the sample size decreases and the data
distributions become more complex.

Our approach: DeepDRK generates knockoffs with a novel
transformer-based generator and a random perturbation technique

1Candés et al., “Model-X knockoffs for high dimensional controlled variable selection,” J. R. Stat. Soc. Ser. B,
2018.
2Romano et al., “Deep knockoffs,” J. Amer. Stat. Assoc., 2020.
3Jordon et al., “KnockoffGAN: Generating knockoffs for feature selection using GANs,” ICLR, 2018.
4Masud et al., “Multivariate soft rank via entropy-regularized optimal transport: sample efficiency and generative
modeling,” JMLR, 2023.
5Sudarshan et al., “Deep direct likelihood knockoffs,” NeurIPS, 2020.
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Model-X Knockoff

Core ingredients: Learned knockoff variables X̃ and knockoff statistics
wj((X , X̃ ),Y ) for j ∈ [p]

Two required conditions for the knockoff variables and the knockoff

statistics

Swap property: (X , X̃ )swap(B)
d
=(X , X̃ ), ∀B ⊂ [p]

Flip-sign property:

wj

(
(X , X̃ )swap(B),Y

)
=

{
wj((X , X̃ ),Y ), if j /∈ B

−wj((X , X̃ ),Y ), if j ∈ B

Feature selection with controlled FDR at nominal level q:

Selection rule: S = {wj ≥ τq}

Threshold: τq = mint>0

{
t :

1+|{j :wj≤−t}|
max(1,|{j :wj≥t}|) ≤ q

}
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Knockoff Transformer and Multi-Swapper

The Knockoff Transformer takes X and i.i.d. standard Gaussian random
variables Z as the inputs to generate the knockoffs X̃θ

Use K swappers {Sωi }
K
i=1 to create adversarial environments for testing

the swap property

The swap loss LSL(X , X̃θ, {Sωi }
K
i=1) aims to enforce the swap property

The dependency regularization loss LDRL(X , X̃θ) aims to decorrelate the
data X and the knockoff X̃θ

Training: minθ maxω1,...,ωK

{
LSL(X , X̃θ, {Sωi }

K
i=1) + LDRL(X , X̃θ)

}
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Post-training Perturbation

Perturb the learned knockoff X̃θ:

X̃DRP
θ,n = (1− αn) · X̃θ + αn · Xrp,

where Xrp is the random row permutation of the design matrix X

The perturbation aims to reduce collinearity1

As n → ∞, αn → 0

1Spector et al.,“Powerful knockoffs via minimizing reconstructability,” Ann. Stat., 2022.
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Results on Synthetic Data
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Sample size: n = 200 or 2000; data dimension: p = 100

Model: Y ∼ N (XTβ, 1); feature sparsity: 20

Nonnull βj ∼ p
scale·

√
n
· Rademacher(0.5)

FDR nominal threshold q = 0.1
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The Behavior of Knockoff Statistics
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Compare the means and the standard deviations of the knockoff statistics
wj ’s

Positive shifts in the null knockoff statistics from baseline models cause:

smaller thresholds τq, as there are fewer null statistics
remaining on the negative side (lower |{j : wj ≤ −t}|), where
τq = mint>0

{
t :

1+|{j :wj≤−t}|
max(1,|{j :wj≥t}|) ≤ q

}
increase in the number of false positives given the selection
rule S = {wj ≥ τq}.
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Results on Semi-synthetic Data
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X drawn from single-cell RNA sequencing (scRNA-seq)1 and used to
simulate response Y

n = 10000 and p = 100

1Hansen et al.,“Normalizing flows for knockoff-free controlled feature selection,” NeurIPS, 2022.
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Summary

We developed DeepDRK for feature selection with controlled FDR for
non-Gaussian data and limited sample size

Paper link: https://arxiv.org/pdf/2402.17176v2

GitHub: https://github.com/nowonder2000/DeepDRK

Thank you! Please feel free to reach out to us at poster session or via email.
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