

COSMIC: Compress Satellite Images Efficiently via Diffusion Compensation

Ziyuan Zhang¹, Han Qiu^{1,#}, Maosen Zhang¹, Jun Liu¹, Bin Chen², Tianwei Zhang³, Hewu Li¹ ¹Tsinghua University, China ²Harbin Institute of Technology, Shenzhen, China ³Nanyang Technological University, Singapore {ziyuan-z23,zhangms24}@mails.tsinghua.edu.cn, {qiuhan,juneliu}@tsinghua.edu.cn chenbin2021@hit.edu.cn, tianwei.zhang@ntu.edu.sg, lihewu@cernet.edu.cn

- Background and motivation
- The proposed method
- Experiment
- Conclusion

Background and motivation

- Images collected by satellites grow rapidly
 - E.g. Sentinel-3 missions can collect maximum 20 TB raw data every day
- The data transmission capability between satellites and ground stations has clear upper bounds
- Downlink Bottleneck -> effectively compress satellite images before transmission
- A novel promising trend: deploying embedded GPUs on satellites
 - E.g. VPU on Phi-Sat-1 and Jetson Xavier NX on Forest-1
 - Limited computing capacity: 21TOPS (NX) v.s. 285TOPS (3090)
- Computational bottleneck -> hard to depoly existing learned compression solutions

Background and motivation

- We fill the above gaps from two aspects
- Computational: a lightweight encoder
- Image quality: a sophisticated decoder with a diffusion based compensation module

 Ground
 Satellite's sensor information collected with each image

 Ground Sample Distance
 0.5864

 UTM Zone (coordinates)
 21H (38.9078° N, 77.0320° W)

 Cloud Cover
 3%

 Timestamp
 Year: 2015 Month: 10 Day: 28 Hour: 14

 Entropy Coding
 00101110111000101001110100....

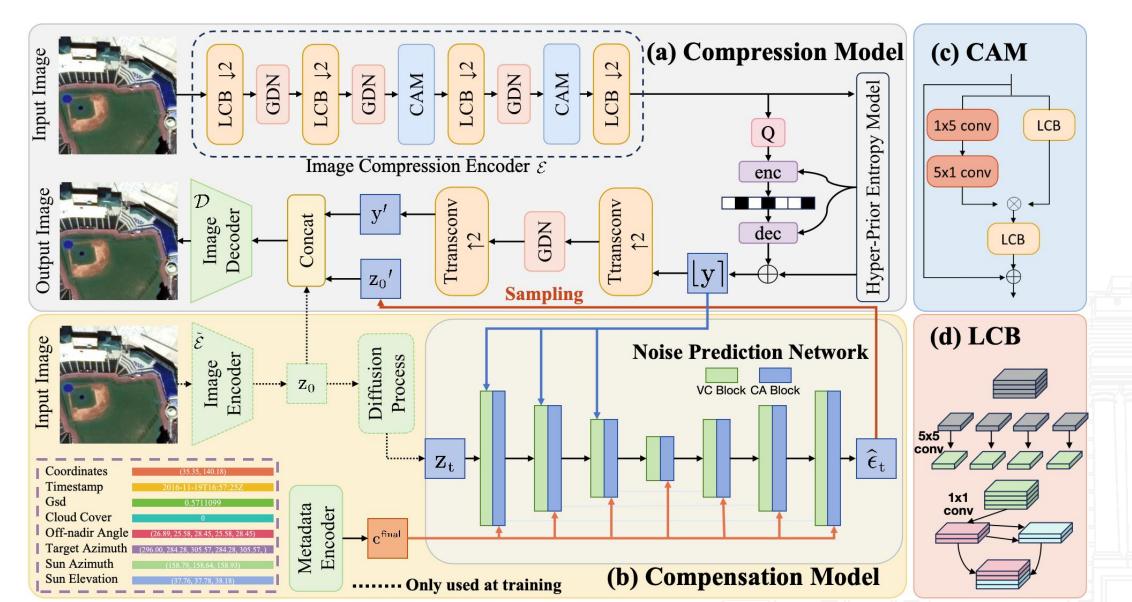
Satellite earth observation image

Key insight !!

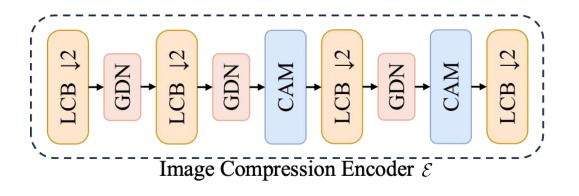
Satellites' earth observation photos enjoy a multi-modal nature in which rich real-time sensor information is the description of the corresponding photo.

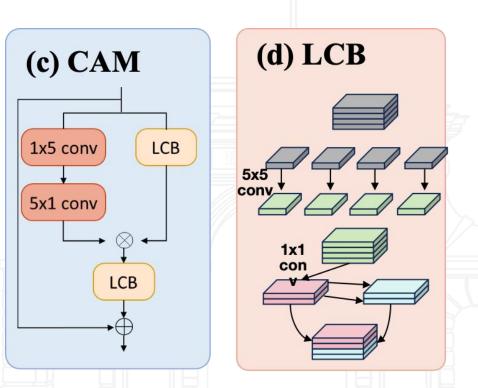
Downlink

- Background and motivation
- The proposed method
- Experiment
- Conclusion



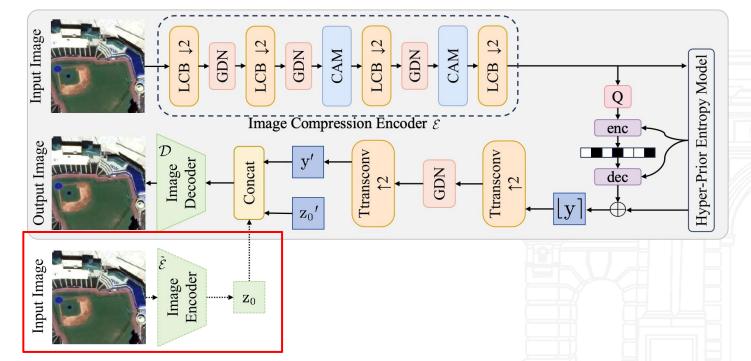
- Lightweight compression encoder
 - LCB block and CAM block
 - CAM block
 - Two one-dimensional convolutions in series
 - Capture the global attention map
 - LCB block
 - Leverage redundancy between feature map





- Compensation-guided image compression
 - image encoder $\tilde{\mathcal{E}}$ -> extract compensation information
 - First stage training: train ${\cal E} \; \tilde{{\cal E}} \;$ and ${\cal D} \;$ together

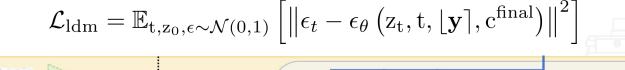
 $\mathcal{L}_{IC} = R + \lambda D = \mathbb{E}\left[-\log_2 p\left(\lfloor \mathbf{y} \rceil | \zeta\right) - \log_2 p\left(\zeta\right)\right] + \lambda \mathbb{E}\left[d\left(\mathbf{x}, \hat{\mathbf{x}}\right)\right]$

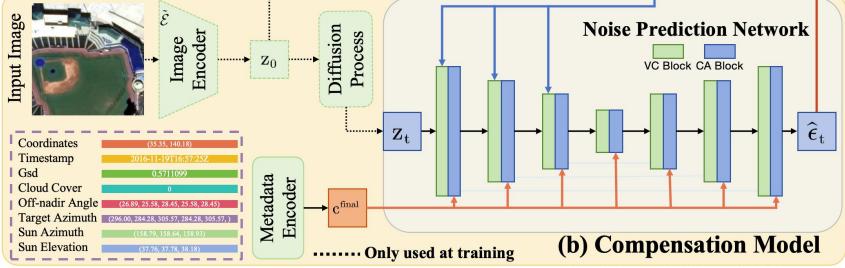


- Conditional diffusion model for loss compensation
 - Metadata projection

 $c^{\text{final}} = \text{MLP}\left(\text{concat}\left(\left[E_{\sin}\left(m_{1}\right), ..., E_{\sin}\left(m_{M}\right)\right]\right)\right)$

- Second stage training: finetune diffusion model

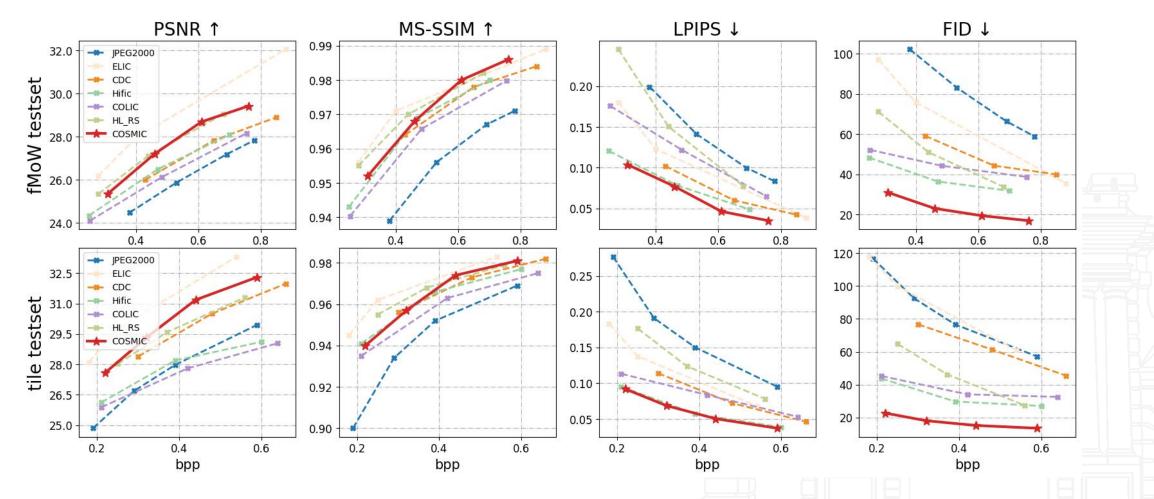




- Background and motivation
- The proposed method
- Experiment
- Conclusion

Experiments

• Quantitive results

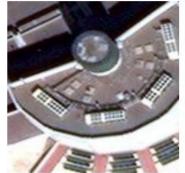


Experiments

• Visual results

 Original
 JPEG2000
 COLIC
 HIFIC
 CDC
 COSMIC

 [0.29bpp/PSNR:27.86]
 [0.20bpp/PSNR:27.28]
 [0.19bpp/PSNR:27.62]
 [0.28bpp/PSNR:28.54]
 [0.21bpp/PSNR:28.70]



Original

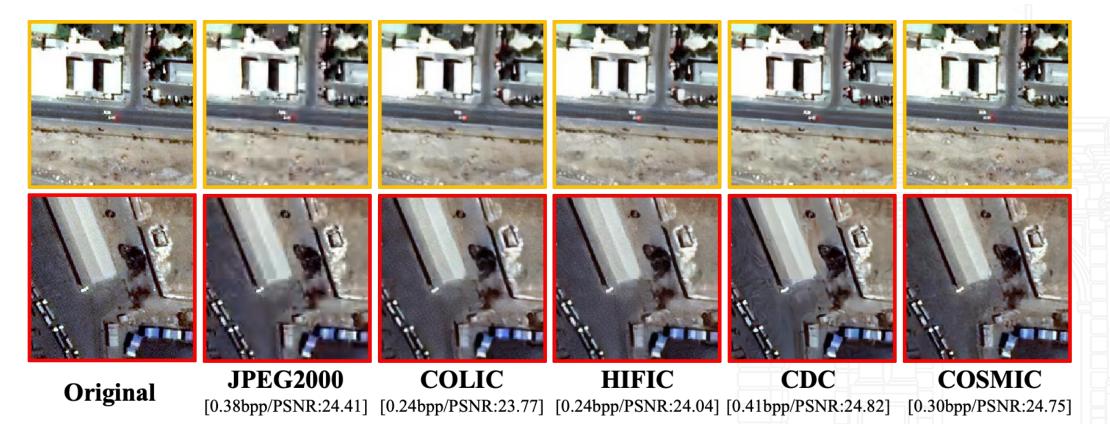
 JPEG2000
 COLIC
 HIFIC
 CDC
 COSMIC

 [0.79bpp/PSNR:29.14]
 [0.74bpp/PSNR:29.06]
 [0.68bpp/PSNR:29.36]
 [0.82bpp/PSNR:30.23]
 [0.75bpp/PSNR:30.85]

Experiment

• Visual results -- tiling scenarios

Illustration for tile testset



Experiment

• Compression influence on downstream tasks

Classes	Original	JPEG2K [46]	Elic [28]	COLIC [36]	HIFIC [39]	CDC [53]	HL_RS [50]	COSMIC
10	98.95%	-4.21%	-5.27%	-1.06%	-1.06%	-2.11%	-2.11%	-1.06%
15	97.92%	-4.17%	-3.84%	-0.70%	-0.70%	-1.40%	-1.39%	-0.70%
20	98.42%	-3.16%	-3.68%	-0.53%	-0.53%	-1.06%	-2.1%	-1.06%

• Encoder efficiency

Method	FLOPs (G)	PSNR ↑	MS-SSIM↑	LPIPS↓	FID↓	bpp↓
CDC [53]	13.1	31.98	0.982	0.0462	45.49	0.66
COLIC [36]	26.4	29.04	0.975	0.0530	32.56	0.64
Hific [39]	26.4	29.11	0.977	0.0384	27.01	0.60
Elic [28]	21.78	33.31	0.983	0.0683	60.80	0.54
HL_RS [50]	11.87	31.30	0.979	0.0782	27.38	0.56
COSMIC	4.9	32.11	0.980	0.0359	13.50	0.59

Achieving SOTA performance with 2.6~5x lower FLOPs

- Background and motivation
- The proposed method
- Experiment
- Conclusion

Conclusion

- We propose a novel idea that uses a lightweight image compression encoder on satellites and leverages satellite images' text-to-image pairing nature for compensation when decompressing.
- We propose a novel compensation model based on stable diffusion to compensate image details when decompressing with the unique sensor data of satellite images as descriptions.
- We consider two datasets under satellite image transmission scenarios, taking into account the typical satellite image transmission tasks like tile scenes, and show SOTA performace.

Thank you for listening!