Proposed Framework O Identifiability Analysis

Experimental Validation

Identifiable Shared Component Analysis of Unpaired Multimodal Mixtures

Subash Timilsina, Sagar Shrestha, and Xiao Fu

School of EECS, Oregon State University

NeurIPS 2024

Vancouver, Canada, Dec 10-15, 2024

・ロト・西ト・ヨト・ヨー りゃぐう

Proposed Framework O Identifiability Analysis

Experimental Validation 000

Shared Component Analysis (SCA)

$$\boldsymbol{x}^{(q)} = \boldsymbol{A}^{(q)} \boldsymbol{z}^{(q)}, \quad \boldsymbol{z}^{(q)} = \begin{bmatrix} \boldsymbol{c} \\ \boldsymbol{p}^{(q)} \end{bmatrix}, \ \forall q = 1, 2.$$
 (1)

▶ $c \in \mathbb{R}^{d_{\mathrm{C}}}$: shared component

• $p^{(q)} \in \mathbb{R}^{d_{\mathrm{P}}^{(q)}}, q = 1, 2$: private component

 $\blacktriangleright~ {\pmb A}^{(q)} \in \mathbb{R}^{d^{(q)} \times (d_{\rm C} + d_{\rm P}^{(q)})}, q = 1,2$ is the mixing matrix

Unaligned SCA: Identify c from unaligned samples $\{x_i^{(1)}\}_{i=1}^M$ and $\{x_i^{(2)}\}_{i=1}^N$

Existing Works on Identifiable SCA and Challenges

Aligned SCA

- Require paired samples $(\boldsymbol{x}_i^{(1)}, \boldsymbol{x}_i^{(2)})_{i=1}^N$, e.g., [Ibrahim et al., 2021],
- Formulated as canonical component analysis (CCA).

Unaligned SCA

Stringent conditions for identifiability, such as component-wise independence [Sturma et al., 2024].

Identifiability Analysis

Experimental Validation

Proposed Method

find
$$\mathbf{Q}^{(q)} \in \mathbb{R}^{d_{\mathbb{C}} \times d^{(q)}}, q = 1, 2,$$
 (2a)
subject to $\mathbf{Q}^{(1)} \mathbf{x}^{(1)} \stackrel{\text{(d)}}{=} \mathbf{Q}^{(2)} \mathbf{x}^{(2)},$ (2b)
 $\mathbf{Q}^{(q)} \mathbb{E} \left[\mathbf{x}^{(q)} (\mathbf{x}^{(q)})^{\top} \right] (\mathbf{Q}^{(q)})^{\top} = \mathbf{I} \quad q = 1, 2,$ (2c)
"(d) " means matched distributions
 $\mathbf{Q}^{(1)} \quad \mathbf{x}^{(1)} \quad \hat{\mathbf{c}}^{(1)} \quad \mathbf{A}^{(d)} \quad \hat{\mathbf{C}}^{(2)} \quad \mathbf{Q}^{(2)} \quad \mathbf{x}^{(2)}$

4/9

◆□▶◆母▶◆臣▶◆臣▶ 臣 のへで

Introductio 00 Proposed Framework O Identifiability Analysis •O Experimental Validation

Identifiability of Unaligned SCA

Theorem 1 (Informal) Sufficiently different $p(\mathbf{z}^{(1)})$ and $p(\mathbf{z}^{(2)}) \implies$ identifiability of \mathbf{c} (i.e., $\mathbf{Q}^{(q)}\mathbf{x}^{(q)} = \mathbf{\Theta}\mathbf{c}$) if one of the following holds,

- 1. Individual components of c are statistically independent and non-Gaussian,
- 2. Support of p(c) is a hyper-rectangle.

Figure: Validation of Theorem 1. Result shows $\widehat{c}^{(1)} \approx \widehat{c}^{(2)}$

Synthetic experiment detail:

• Shared component \mathbb{R}^2 - Vonmises distribution. $p^{(q)} \in \mathbb{R}^1$ from Laplace and Uniform distribution

5/9

Experimental Validation

Enhanced Identifiability via Structural Constraints

Homogeneous Domains (i.e., $A^{(q)} = A \ \forall q = 1, 2$)

Theorem 2 (Informal) Sufficiently different $p(z^{(1)})$ and $p(z^{(2)})$ with same mixing matrix \implies identifiability of c (i.e., $Qx^{(q)} = \Theta c$).

Weakly Supervised Cases (i.e., $Q^{(1)}x_{\ell}^{(1)} = Q^{(2)}x_{\ell}^{(2)}, \ \ell \in \{(x_{\ell}^{(1)}, x_{\ell}^{(2)})\}_{\ell=1}^{D}$)

Theorem 3 (Informal) Sufficiently different $p(\mathbf{z}^{(1)})$ and $p(\mathbf{z}^{(2)})$ with $D \ge d_{\rm C}$ paired samples \implies identifiability of \mathbf{c} (i.e., $\mathbf{Q}^{(q)}\mathbf{x}^{(q)} = \mathbf{\Theta}\mathbf{c}$).

◆□▶◆□▶◆三▶◆三▶ 三三 のへで

Proposed Framework O Identifiability Analysis

Experimental Validation

Experiments : Domain Adaptation

Table: Classification accuracy on the target domain of office-Home dataset (ResNet50 embedding).

source \rightarrow target	ResNet	DANN	MDD	MCC	SDAT	ELS	Proposed
$Ar \rightarrow CI$	42.0 ± 0.2	46.7 ± 0.2	47.4 ± 0.3	44.4 ± 0.3	47.3 ± 0.4	48.5 ± 0.2	$\textbf{51.0} \pm 0.3$
$Ar \rightarrow Pr$	69.2 ± 0.1	70.2 ± 0.4	72.8 ± 0.4	72.4 ± 0.2	71.1 ± 0.3	71.0 ± 0.3	75.8 ± 0.1
$Ar \rightarrow Rw$	80.2 ± 0.3	81.2 ± 0.4	81.2 ± 0.1	80.3 ± 0.3	80.5 ± 0.1	80.8 ± 0.4	82.5 ± 0.2
CI ightarrow Ar	60.7 ± 0.4	60.8 ± 0.3	62.4 ± 0.1	59.2 ± 0.4	57.6 ± 0.2	59.8 ± 0.1	62.7 ± 0.4
$CI \rightarrow Pr$	71.0 ± 0.1	69.8 ± 0.3	70.0 ± 0.4	71.1 ± 0.4	66.5 ± 0.1	68.5 ± 0.2	72.5 ± 0.3
$CI \rightarrow Rw$	74.8 ± 0.2	73.3 ± 0.1	74.1 ± 0.1	76.2 ± 0.2	70.7 ± 0.1	71.7 ± 0.1	75.8 ± 0.1
$\mathbf{Pr} ightarrow \mathbf{Ar}$	60.6 ± 0.2	62.2 ± 0.1	64.3 ± 0.1	59.2 ± 0.1	62.5 ± 0.4	60.9 ± 0.2	64.4 ± 0.3
$Pr \rightarrow Cl$	44.8 ± 0.1	48.8 ± 0.1	48.0 ± 0.3	46.2 ± 0.2	49.0 ± 0.3	49.6 ± 0.3	50.4 ± 0.1
$\mathbf{Pr} \rightarrow \mathbf{Rw}$	79.6 ± 0.1	80.3 ± 0.4	79.6 ± 0.3	80.3 ± 0.2	80.0 ± 0.1	79.2 ± 0.1	81.7 ± 0.2
$\mathbf{Rw} \to \mathbf{Ar}$	70.1 ± 0.2	71.5 ± 0.1	71.4 ± 0.3	67.8 ± 0.2	71.6 ± 0.4	71.3 ± 0.4	72.6 ± 0.1
$Rw \rightarrow Cl$	45.8 ± 0.2	50.9 ± 0.2	50.3 ± 0.1	50.0 ± 0.2	51.4 ± 0.1	50.7 ± 0.1	53.2 ± 0.1
$\mathbf{Rw} \rightarrow \mathbf{Pr}$	80.7 ± 0.1	80.6 ± 0.4	81.1 ± 0.1	81.2 ± 0.1	80.7 ± 0.1	79.8 ± 0.3	82.9 ± 0.3
Average	64.9 ± 0.1	66.3 ± 0.2	66.8 ± 0.2	65.6 ± 0.2	65.7 ± 0.2	65.9 ± 0.2	68.7 ± 0.2

Identifiability Analysis

Experiments: Cross-lingual Information Retrieval & Single Cell Sequence alignment

Table:	Average precision	P@1 of cross-language
	information	retrieval.

source \rightarrow target	Adv - NN	proposed - NN	Adv - CSLS	proposed - CSLS
en→es	61.3	66.4	70.2	74.9
es→en	55.4	65.3	67.6	75.6
en→it	48.2	54.4	60.8	67.7
it→en	55.2	51.9	63.8	66.0
en→fr	63.6	60.2	72.6	73.7
fr→en	55.4	58.4	64.1	71.4
en→de	51.4	56.7	59.3	67.6
de→en	42.5	57.0	51.0	59.3
en→ru	32.7	34.9	38.6	41.4
ru→en	27.6	41.6	35.0	50.8
en→ar	12.6	22.7	16.7	29.1
ar→en	15.7	26.9	20.1	35.6
en→vi	2.1	10.4	7.7	22.8
vi→en	2.7	17.3	4.4	33.0
Average	37.6	44.5	45.1	54.9

Figure: k-NN accuracy for single-cell sequence alignment.

◆□▶▲□▶▲目▶▲目▶ 目 のへで

Introduction 00 Proposed Framework O Identifiability Analysis

Experimental Validation

Visit Poster for more details !

Check out our paper !

◆□▶▲□▶▲目▶▲目▶ ▲目▼