Reinforcement Learning with LTL and ω -Regular Objectives via Optimality-Preserving Translation to Average Rewards

Xuan-Bach Le Dominik Wagner

Leon Witzman Alexander Rabinovich Luke Ong

Aim of Reinforcement Learning:

Agent learns to accomplish *task* in unknown environment

Aim of Reinforcement Learning:

Agent learns to accomplish *task* in unknown environment

How to specify tasks?

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

 $\mathcal{R}(s_0) \coloneqq 0.2, \mathcal{R}(s_1) \coloneqq 5.3, \ldots$

X lack of interpretability

✓ interpretable

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

$$\mathcal{R}(s_0) \coloneqq 0.2, \mathcal{R}(s_1) \coloneqq 5.3, \ldots$$

X lack of interpretability

Objective: maximise probability to satisfy formula e.g. visit target state exactly once

 \checkmark interpretable

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

- $\mathcal{R}(s_0) \coloneqq 0.2, \mathcal{R}(s_1) \coloneqq 5.3, \ldots$
- × lack of interpretability
- ✓ rich theory
- ✓ practical algorithms

Objective: maximise probability to satisfy formula e.g. visit target state exactly once

- ✓ interpretable
- X much less explored

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

Optimality-Preserving

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

Optimality-Preserving

Impossible* if rewards are aggregated by discounting

$$\sum_{i\in\mathbb{N}}\gamma^i\cdot R_i$$

^{*}without prior knowledge of MDP

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

Optimality-Preserving

Impossible* if rewards are aggregated by discounting

$$\sum_{i\in\mathbb{N}}\gamma^i\cdot R_i$$

► In this paper: study *limit-average* rewards instead

$$\liminf_{t\in\mathbb{N}}\mathbb{E}\left[\frac{1}{t}\sum_{i=0}^{t-1}R_i\right]$$

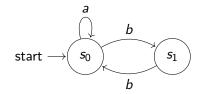
*without prior knowledge of MDP

Negative Result for Reward Functions

Proposition. There is *no optimality-preserving specification translation* from LTL objectives to limit-average rewards given by a *memoryless reward function* \mathcal{R} .

Negative Result for Reward Functions

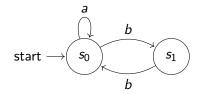
Proposition. There is *no optimality-preserving specification translation* from LTL objectives to limit-average rewards given by a *memoryless reward function* \mathcal{R} .



objective: visit s_1 exactly once

Negative Result for Reward Functions

Proposition. There is *no optimality-preserving specification translation* from LTL objectives to limit-average rewards given by a *memoryless reward function* \mathcal{R} .



objective: visit s_1 exactly once

Use reward machines for reward assignment (rewards can depend on internal state)

Theorem. There exists an optimality-preserving translation from LTL/ω -regular objectives to *reward machines* with *limit-average* aggregation.

Theorem. There exists an optimality-preserving translation from LTL/ω -regular objectives to *reward machines* with *limit-average* aggregation.

^{*}Alur et al.: A framework for transforming specifications in reinforcement learning, 2022.

Theorem. There exists an optimality-preserving translation from LTL/ω -regular objectives to *reward machines* with *limit-average* aggregation.

Proof Sketch.

Synchronise MDP with automaton expressing objective to obtain product MDP.

^{*}Alur et al.: A framework for transforming specifications in reinforcement learning, 2022.

Theorem. There exists an optimality-preserving translation from LTL/ω -regular objectives to *reward machines* with *limit-average* aggregation.

Proof Sketch.

- Synchronise MDP with automaton expressing objective to obtain product MDP.
- If transitions with positive probability are known, compute *minimal accepting end components* and give reward 1 to transitions *staying* in them.

^{*}Alur et al.: A framework for transforming specifications in reinforcement learning, 2022.

Theorem. There exists an optimality-preserving translation from LTL/ω -regular objectives to *reward machines* with *limit-average* aggregation.

Proof Sketch.

- Synchronise MDP with automaton expressing objective to obtain product MDP.
- If transitions with positive probability are known, compute *minimal accepting end components* and give reward 1 to transitions *staying* in them.
- Otherwise, keep track of previously taken transitions and give rewards based on the current knowledge of transitions with positive probability.

^{*}Alur et al.: A framework for transforming specifications in reinforcement learning, 2022.

Machine Reward Eunction (limit-average)

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

optimality-preserving
 Translation ✓

Machine Reward Eunction (limit-average)

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

algorithms: R-learning, RVI Q-learning, Differential Q-learning, ...

optimality-preserving
Translation ✓

Machine Reward Eunction (limit-average)

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

algorithms: R-learning, RVI Q-learning, Differential Q-learning, ...

Provable convergence? without assumptions on MDP?

> optimality-preserving Translation </

Convergence for Average Rewards and LTL

Theorem. Optimal policies for RL with limit average rewards can be learned in the limit (*without* assumptions on MDP).

Convergence for Average Rewards and LTL

Theorem. Optimal policies for RL with limit average rewards can be learned in the limit (*without* assumptions on MDP).

Algorithm sketch. Solve a sequence of problems with discount factor $\gamma \nearrow 1$ with (black-box) PAC-algorithm for discounted RL.

Convergence for Average Rewards and LTL

Theorem. Optimal policies for RL with limit average rewards can be learned in the limit (*without* assumptions on MDP).

Algorithm sketch. Solve a sequence of problems with discount factor $\gamma \nearrow 1$ with (black-box) PAC-algorithm for discounted RL.

Corollary. Optimal Policies for LTL can be learned in the limit.

^{*}Alur et al.: A framework for transforming specifications in reinforcement learning, 2022.

Summary

Machine Reward Eunction (limit-average)

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

← optimality-preserving
Translation ✓

Summary

Machine Reward Eunction (limit-average)

Linear Temporal Logic (LTL)

(more generally ω -regular languages)

algorithm with *provable convergence* \checkmark

optimality-preserving