Accurate and Steady Inertial Pose Estimation through Sequence Structure Learning and Modulation

Yinghao Wu¹ Chaoran Wang¹ Lu Yin¹ Shihui Guo¹ Yipeng Qin²

¹ School of Informatics, Xiamen University, China

² School of Computer Science & Informatics, Cardiff University, UK

Inertial Pose Estimation

IMU-Based: environment-free occlusion-unaware privacy-friendly

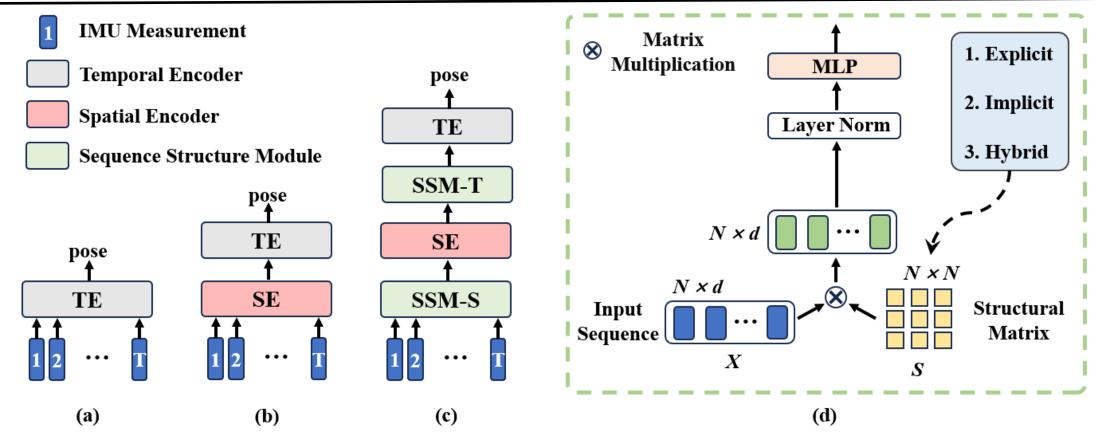
Native Transformer

Native Transformer

variable-length sequence lacks inductive bias

+

Inertial Pose Estimation

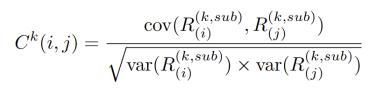

fixed-length sequences structural properties

inaccurate postures
unacceptable jitter

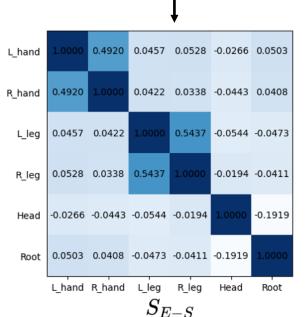
Contribution1:

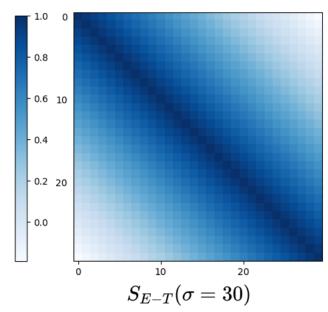
We identify a key limitation of the native transformer architecture: its lack of inductive biases for modeling **fixed-length sequences** with inherent structural properties. To address this shortcoming, we propose a novel Sequence Structure Module (SSM) that enables transformers to effectively capture and leverage the structural priors present in fixed-length sequential data.

Sequence Structure Module (SSM)

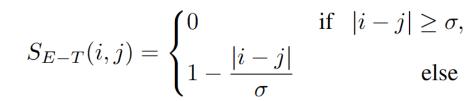


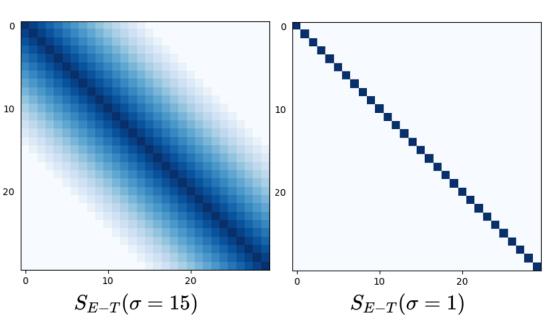
Contribution2:


For inertial motion capture tasks involving sequential IMU data, we propose two SSM variants: SSM-S and SSM-T, which incorporate structural inductive biases of the IMU sensor layout (spatial) and time frames (temporal), respectively, into transformer learning.


Structural Matrix

Structural Matrix for SSM-S




$$S_{E-S} = \frac{1}{3} \sum_{k=x,y,z} C^k$$

Structural Matrix for SSM-T

Experimental Results

Table 1: Comparison with SOTA methods on DIP-IMU [18] and TotalCapture [46] datasets with SMPL [29] skeleton. **Bold** indicates best and <u>underline</u> indicates runner-up results.

	DIP-IMU				TotalCapture					
	SIP Err	Ang Err	Pos Err	Mesh Err	Jitter	SIP Err	Ang Err	Pos Err	Mesh Err	Jitter
DIP[18]	17.10	15.16	7.33	8.96	3.01	18.62	17.22	9.42	11.22	3.62
Transpose[56]	17.03	8.86	6.03	7.14	1.08	16.40	12.77	6.42	7.20	1.83
TIP[20]	16.92	9.07	5.63	6.62	1.53	13.20	12.24	5.68	6.78	1.57
PIP[55]	15.02	8.72	5.01	6.02	0.14	12.93	12.04	5.61	6.51	0.18
DynaIP[60]	14.11	7.00	<u>4.97</u>	5.97	0.18	12.42	11.06	5.11	5.79	0.22
PNP[57]	<u>13.71</u>	8.75	4.97	<u>5.77</u>	0.17	<u>10.89</u>	<u>10.45</u>	<u>4.74</u>	<u>5.45</u>	0.26
Ours	7.90	6.06	3.12	3.78	0.07	7.00	6.82	3.36	4.00	0.09

Table 2: Comparison with SOTA methods on AnDy [33] and CIP [37] datasets with Xsens [41] skeleton.

	AnDy			CIP			
	SIP Err	Ang Err	Pos Err	SIP Err	Ang Err	Pos Err	
Transpose[56] TIP[20]	12.15 10.11	6.29 4.55	4.91 3.56	20.06 13.05	8.75 5.67	6.86 4.30	
PIP[55] DynaIP[60]	9.49 <u>8.93</u>	4.09 <u>3.45</u>	3.29 3.41	12.68 11.42	5.52 4.54	4.12 3.69	
Ours	4.56	3.37	1.73	8.14	<u>5.49</u>	2.57	

Table 3: Ablation study of SSM-S and SSM-T.

Models	Ang Err	Jitter	au
Baseline	8.82	0.48	14.25
+ SSM-S	7.83	0.43	12.04
+ SSM-T	7.93	0.09	8.68
Ours	6.82	0.09	7.46

Experimental Results

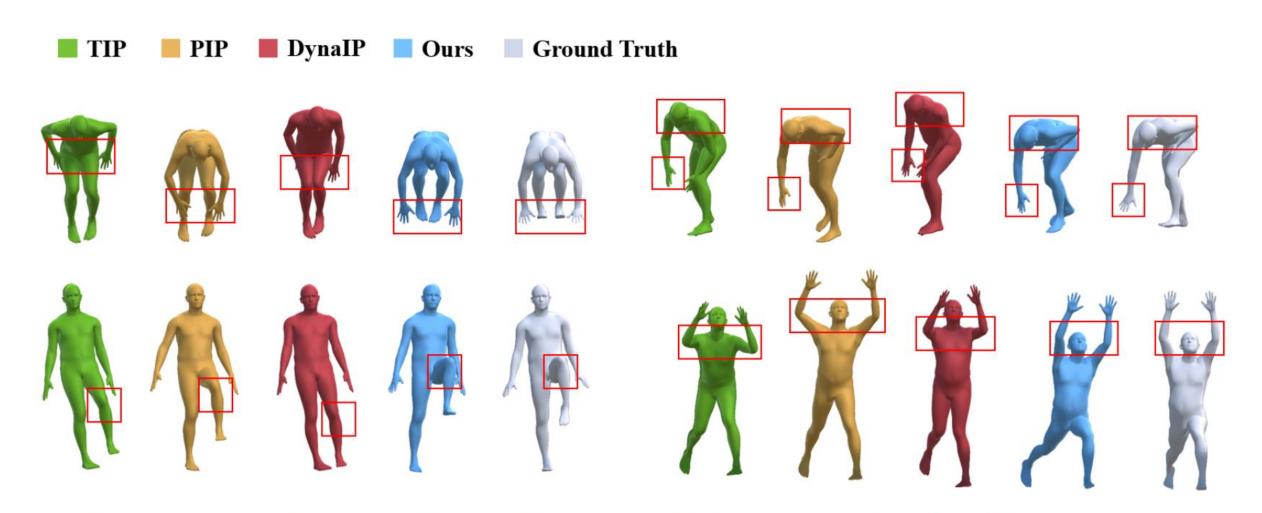


Figure 4: Qualitative comparisons with the state-of-the-art methods on TotalCapture dataset.

Experimental Results

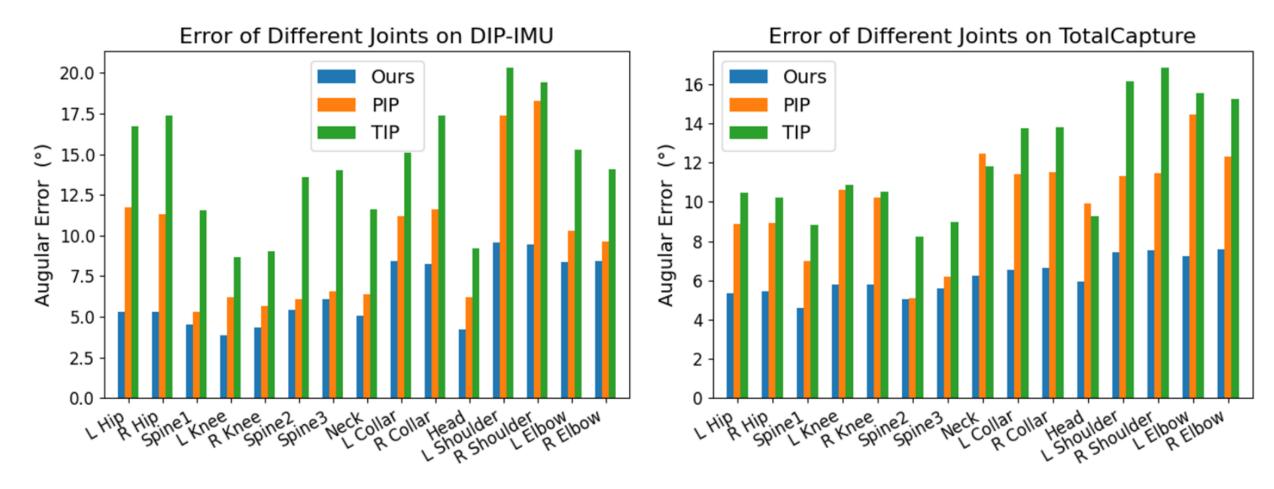



Figure 5: Error of different joints on DIP-IMU and TotalCapture datasets.

Live Demo

Accurate and Steady Inertial Pose Estimation through Sequence Structure Learning and Modulation

Thank you!