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❑ Leverage contextual information.

➢ A natural temporal dependency exists between consecutive classified samples.

➢ Not only exists at the data level but also manifests in the changes of labels.

❑ Inconsistent boundary labels.

➢ Manual annotations determine the start and end times for each class.

➢ Lacking of unified quantification standards leads to experiential differences.

➢ Inconsistent labels leads to unstable model training.

Contextual Inconsistency
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Theorem 2.1.
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Con4m – Continuous Encoder

Contexts at Data level:

Consecutive segments within the same state should 

be classified into the same class.

➢ Smoothing with a Gaussian kernel promotes the 

continuity of representations of time segments in a local 

temporal window.

➢ Aggregating neighbor information belonging to the 

same class can improve the discriminative power of the 

target instance.



Con4m – Coherent Predictor

Contexts at Label level:

The predictions for consecutive segments should exhibit a 

constrained monotonicity over time.

➢ By weightedly aggregating predictions from similar time segments, the 

model can focus on contexts more likely to belong to the same class.

➢ Utilize contextual label information to ensure the monotonicity of 

predictions across consecutive segments through hard constraints.



Con4m – Consistent Trainer

Label Consistency Training Framework:

Although people may have differences in the fuzzy 

transitions between classes, they tend to reach an 

agreement on the most significant core part of each class.

➢ Adopt curriculum learning techniques to help the model learn 

instances from the easy (core) to the hard (transition) part.

➢ Adopt noisy label learning techniques to gradually change the 

raw labels to harmonize the inconsistency.
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Verify the effectiveness of the label 

harmonization process on SEEG data.
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Case Study

➢ Con4m demonstrates a more coherent narrative by constraining the prediction 

behavior and aligning with the contextual data information.

➢ Con4m accurately identifies the consistent boundary within the time interval 

spanning across two classes.



Conclusion

❑ We are the first to propose a practical consistency learning framework Con4m for the segmented TSC 
based on the raw MVD.

❑ By comprehensively integrating prior knowledge from the data and label perspectives, we guide the 
model to focus on effective contextual information.

❑ Based on context-aware predictions, a progressive harmonization approach for handling inconsistent 
training labels is designed to yield a more robust model.

❑ Extensive experiments on three public and one private MVD datasets demonstrate the superior 
performance of Con4m.
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