Generalization Bound and Learning Methods for Data-Driven Projections in Linear Programming

Shinsaku Sakaue1 and Taihei Oki2

1The University of Tokyo, 2Hokkaido University

NeurIPS2024 @ Vancouver, Canada

maximize \overline{x} ∈ \mathbb{R}^n $c^{\top}x$ subject to $Ax \leq b$

We want to solve high-dimensional LPs quickly.

E.g., in transportation planning, we solve LPs with $n =$ num.of edges in a network.

Projection Method

maximize $y \in \mathbb{R}^k$ $c^{\top}Py$ subject to $APy \leq b$

Projection matrix $P \in \mathbb{R}^{n \times k}$ with $k \ll n$ reduces the LP dim. from *n* to *k*.

If Im P contains good solutions, we can quickly find them by solving k -dim. LPs!

Background: Random Projection

Random projection for LPs has been emerging (Vu et al. 2018; Poirion et al. 2023), inspired by *random sketching* in numerical linear algebra.

Akchen and Mišić (2024) used sparse P for reducing LP dim. (column randomization)

However, empirical solution quality has room for improvement (cf. Liberti et al. 2023).

Our Approach: Data-Driven Projection

Assume data of N past LP instances are available: $\pi_i = (c_i, A_i, b_i)$ for $i = 1, ..., N$. Learn P from ${\lbrace \pi_i \rbrace}_{i=1}^N$ and use it when solving LPs in the future.

Inspired by *data-driven sketching* in numerical linear algebra (Indyk et al. 2019).

Questions:

- 1. How to learn good P in practice?
- 2. How much data is enough for learned P to generalize to future LPs?

Learning Method 1: PCA

Solve training LPs $\pi_i = (c_i, A_i, b_i)$ to find opt. sol. $x_i \in \text{argmax} \{c^\top x \mid Ax \leq b\}.$

Im P should cover a k-dim subspaces close to x_i 's.

Apply PCA to $(x_1, ..., x_N)^\top$ so that $x_i \approx Py_i$ holds for some $y_i \in \mathbb{R}^k$.

Learning Method 2: Gradient Ascent

Consider improving $u(P, \pi_i)$ directly by gradient-based updates.

Under some regularity conditions, we can compute the gradient w.r.t. P :

$$
\nabla u(P, \pi_i) = \nabla \max \{ c_i^\top P y \mid A_i P y \le b_i \}
$$

via the implicit function theorem.

Apply stochastic gradient ascent to maximize $\frac{1}{N}$ $\frac{1}{N} \sum_{i=1}^{N} u(P, \pi_i).$

Experiments

Full = w/o projection; ColRand = random projection of Akchen and Mišić (2024). PCA and SGA learn P from data. All LPs are solved with Gurobi.

PCA and SGA lead to near optimal objectives in most datasets, outperforming ColRand.

Experiments

Full = w/o projection; ColRand = random projection of Akchen and Mišić (2024). PCA and SGA learn P from data. All LPs are solved with Gurobi.

Projection-based methods are much faster than Full. PCA and SGA enable fast "and" accurate solving.

Generalization Bound

Assume LP instances $\pi = (c, A, b) \in \Pi$ are drawn from a distribution \mathcal{D} .

Define $u(P, \pi) \coloneqq \max\{c^{\top}Py \mid APy \leq b\}$ and $\mathcal{U} \coloneqq \{u(P, \cdot): \Pi \to \mathbb{R} \mid P \in \mathbb{R}^{n \times k}\}.$

The bound holds *uniformly for all* $P \in \mathbb{R}^{n \times k}$, regardless of how it is learned!

Common idea in *data-driven algorithm design* (Gupta–Roughgarden 2017; Balcan 2021).

Pseudo-Dimension Bounds

Theorem $\text{pdim}(\mathcal{U}) = \tilde{O}(nk^2)$ (and $\Omega(nk)$).

Proof idea (inspired by Balcan et al. 2022)

 $\text{pdim}(\mathcal{U}) = \max N \text{ s.t. } \exists \pi_1 \dots, \pi_N \in \Pi, \exists t_1 \dots, t_N \in \mathbb{R}, \; \left| \left\{ \left(\mathbb{1}_{u(P, \pi_i) > t_i} \right)_{i=1}^N \right\} \right|$ $\left| P \in \mathbb{R}^{n \times k} \right| = 2^N.$

 $u(P, \pi_i)$'s are attained at vertices; num. of vertices \leq (#constraints)^k.

" $u(P, \pi_i) > t_i$?" is determined by inequalities of "obj. at some vertex $>t_i$?" which are polynomials of $P \in \mathbb{R}^{n \times k}$ of degree $O(k)$ due to Cramer's rule.

By Warren's theorem,

$$
\left|\left\{\left(\mathbb{I}(u(P,\pi_i)>t_i)\right)_{i=1}^N\,\Big|\,P\in\mathbb{R}^{n\times k}\right\}\right|\lesssim \left(N(\text{\#constraints})^k k/(nk)\right)^{nk}.
$$

Solving $(N(\text{\#constants})^k/(nk))^{\text{n}k} \leq 2^N$ implies the $\tilde{O}(nk^2)$ bound.

Polynomials of $P \in \mathbb{R}^{n \times k}$ partition $\mathbb{R}^{n \times k}$ into cells. In each cell, outcomes of " $u(P, \pi_i) > t_i$?" remain the same.