Generalization Bound and Learning Methods for Data-Driven Projections in Linear Programming

Shinsaku Sakaue¹ and Taihei Oki²

¹The University of Tokyo, ²Hokkaido University

NeurIPS2024 @ Vancouver, Canada

$\underset{x \in \mathbb{R}^n}{\text{maximize } c^{\top}x} \quad \text{subject to } Ax \leq b$

We want to solve high-dimensional LPs quickly.

E.g., in transportation planning, we solve LPs with n = num.of edges in a network.

Projection Method

 $\underset{y \in \mathbb{R}^k}{\text{maximize } c^\top P y} \quad \text{subject to } AP y \le b$

Projection matrix $P \in \mathbb{R}^{n \times k}$ with $k \ll n$ reduces the LP dim. from n to k.

If Im P contains good solutions, we can quickly find them by solving k-dim. LPs!

Background: Random Projection

Random projection for LPs has been emerging (Vu et al. 2018; Poirion et al. 2023), inspired by *random sketching* in numerical linear algebra.

Akchen and Mišić (2024) used sparse P for reducing LP dim. (column randomization)

However, empirical solution quality has room for improvement (cf. Liberti et al. 2023).

Our Approach: Data-Driven Projection

Assume data of N past LP instances are available: $\pi_i = (c_i, A_i, b_i)$ for i = 1, ..., N. Learn P from $\{\pi_i\}_{i=1}^N$ and use it when solving LPs in the future.

Inspired by *data-driven sketching* in numerical linear algebra (Indyk et al. 2019).

Questions:

- 1. How to learn good *P* in practice?
- 2. How much data is enough for learned *P* to generalize to future LPs?

4

Learning Method 1: PCA

Solve training LPs $\pi_i = (c_i, A_i, b_i)$ to find opt. sol. $x_i \in \operatorname{argmax} \{c^T x \mid Ax \leq b\}$.

Im P should cover a k-dim subspaces close to x_i 's.

Apply PCA to $(x_1, ..., x_N)^{\top}$ so that $x_i \approx Py_i$ holds for some $y_i \in \mathbb{R}^k$.

Learning Method 2: Gradient Ascent

Consider improving $u(P, \pi_i)$ directly by gradient-based updates.

Under some regularity conditions, we can compute the gradient w.r.t. *P*:

$$\nabla u(P, \pi_i) = \nabla \max\{c_i^\top P y \mid A_i P y \le b_i\}$$

via the implicit function theorem.

Apply stochastic gradient ascent to maximize $\frac{1}{N}\sum_{i=1}^{N} u(P, \pi_i)$.

Experiments

Full = w/o projection; ColRand = random projection of Akchen and Mišić (2024). PCA and SGA learn *P* from data. All LPs are solved with Gurobi.

PCA and SGA lead to near optimal objectives in most datasets, outperforming ColRand.

Experiments

Full = w/o projection; ColRand = random projection of Akchen and Mišić (2024). PCA and SGA learn *P* from data. All LPs are solved with Gurobi.

Projection-based methods are much faster than Full. PCA and SGA enable fast "and" accurate solving.

Generalization Bound

Assume LP instances $\pi = (c, A, b) \in \Pi$ are drawn from a distribution \mathcal{D} .

Define $u(P,\pi) \coloneqq \max\{c^{\top}Py \mid APy \le b\}$ and $\mathcal{U} \coloneqq \{u(P,\cdot): \Pi \to \mathbb{R} \mid P \in \mathbb{R}^{n \times k}\}.$

The bound holds *uniformly for all* $P \in \mathbb{R}^{n \times k}$, regardless of how it is learned!

Common idea in *data-driven algorithm design* (Gupta–Roughgarden 2017; Balcan 2021).

Pseudo-Dimension Bounds

Theorem $pdim(\mathcal{U}) = \tilde{O}(nk^2)$ (and $\Omega(nk)$).

Proof idea (inspired by Balcan et al. 2022)

$$pdim(\mathcal{U}) = \max N \text{ s.t. } \exists \pi_1 \dots, \pi_N \in \Pi, \exists t_1 \dots, t_N \in \mathbb{R}, \left| \left\{ \left(\mathbb{1}_{u(P,\pi_i) > t_i} \right)_{i=1}^N \mid P \in \mathbb{R}^{n \times k} \right\} \right| = 2^N.$$

 $u(P, \pi_i)$'s are attained at vertices; num. of vertices $\leq (\text{#constraints})^k$.

" $u(P, \pi_i) > t_i$?" is determined by inequalities of "obj. at some vertex > t_i ?" which are polynomials of $P \in \mathbb{R}^{n \times k}$ of degree O(k) due to Cramer's rule.

By Warren's theorem,

$$\left|\left\{\left(\mathbb{I}(u(P,\pi_i)>t_i)\right)_{i=1}^N \mid P \in \mathbb{R}^{n \times k}\right\}\right| \lesssim \left(N(\#\text{constraints})^k k/(nk)\right)^{nk}.$$

Solving $(N(\# constraints)^k/(nk))^{nk} \leq 2^N$ implies the $\tilde{O}(nk^2)$ bound.

Polynomials of $P \in \mathbb{R}^{n \times k}$ partition $\mathbb{R}^{n \times k}$ into cells. In each cell, outcomes of " $u(P, \pi_i) > t_i$?" remain the same.