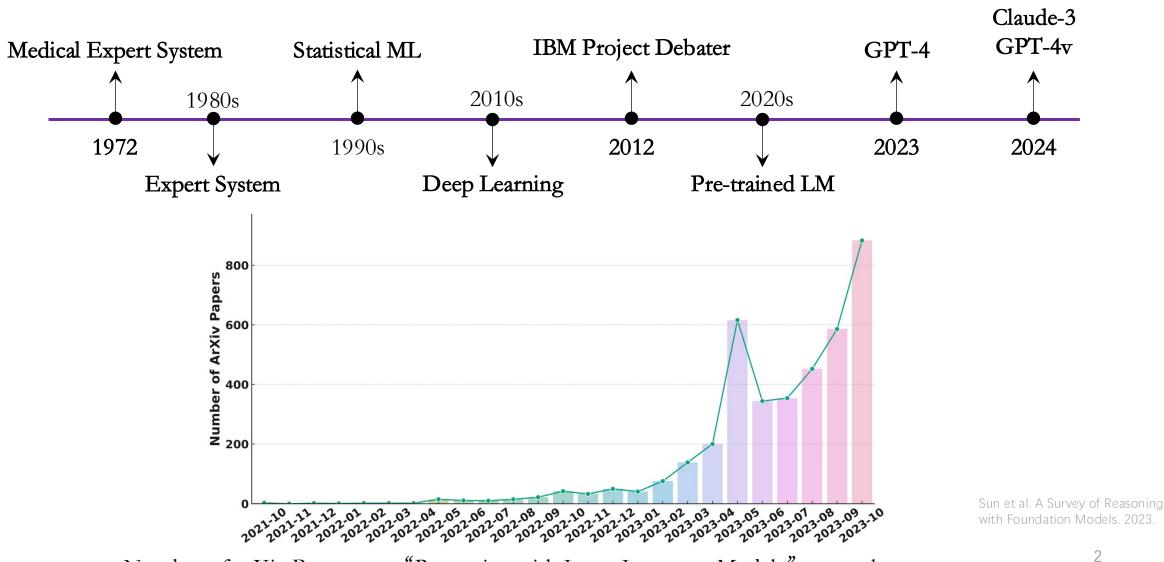


AMOR: A Recipe for Building Adaptable MOdulaR Knowledge Agents Through Process Feedback

Jian Guan, Wei Wu, Zujie Wen, Peng Xu, Hongning Wang, Minlie Huang

CoAl Group, Tsinghua University; Ant Group

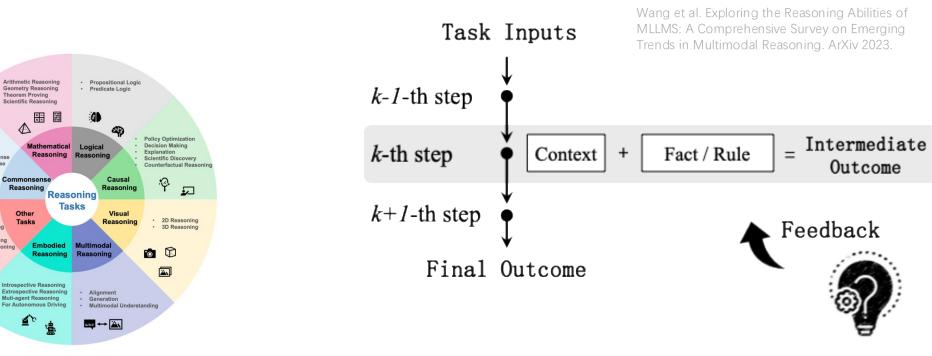
Reasoning as the Longstanding Aim of Al



Number of arXiv Papers on "Reasoning with Large Language Models" over the past two years.

What is Reasoning in the Context of LLMs?

• Natural language reasoning is a **process** of **selecting** and **interpreting information** from given contexts, **making connections**, **verifying**, and finally **drawing conclusions**.



Reasoning tasks span various domains and require broad knowledge.

Commonsense QA

Theory of Mind

Weather Prediction

Medical Reasoning Long-Chain Reasoning Bioinformatics Reason

Audio Reasonin

1

Abstract Reasoning

Defeasible Reasoning

Physical Commonsense

Spatial Commonsense

**** •---

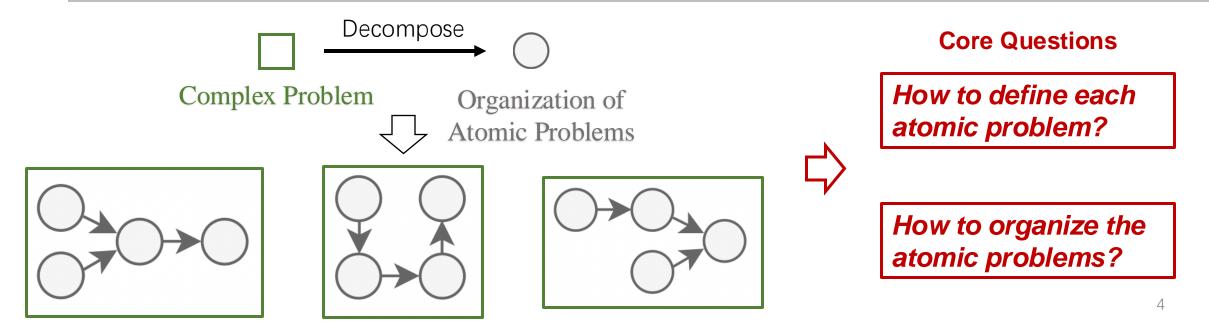
Sun et al. A Survey of Reasoning with Foundation Models. 2023.

Various reasoning tasks can be formalized as a step-by-step process of solving subtasks.

Principles for Solving Complex Reasoning Tasks

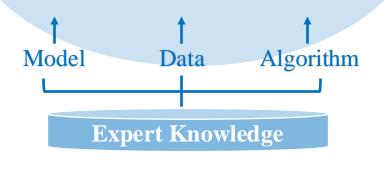
- I'll call "Society of Mind" this scheme in which each mind is made of many smaller processes. These we'll call agents. Each mental agent by itself can only do some simple thing that needs no mind or thought at all. Yet when we join these agents ... leads to true intelligence.
- The law of thought depends not only upon the **properties of those brain cells**, but also on **how they are connected**.

— 《Society of Mind》, Marvin Minsky (1969 Turing Award Winner)



Towards Specific and General Approaches

- Math Word Problems
- Coding
- Question-Answering



Specialist

Core Questions

How to define each atomic problem?

How to organize the atomic problems?

- Deduction •
- Induction •
- Abduction •

General Algorithms/Data/Systems...

Generalist

AGI

Desiderata for a qualifying agent

- ✓ Possess a robust reasoning logic to address a specific task
- ✓ Maintain an **adaptive mechanism** to adjust to specific environments
- ✓ Be amenable to human interventions through direct feedback

Method	Reasonin	g Logic	Adaptive Mechanism	Feedback	
Methou	Step	Inter-Step Dependency	Adaptive Mechanism	recuback	
WebGPT [27]	Tool Invoking	Undefined	Imitation Learning from Humans	Outcome	
CoT [43]	Reasoning	Undefined	Prompting	Undefined	
ToT [49]	Reasoning	Undefined	Prompting	Process	
ReAct [50]	Reasoning&Tool Invoking	Undefined	Prompting	Undefined	
Reflexion [35]	Reasoning&Tool Invoking	Undefined	Prompting	Process	
AgentLM [52]	Reasoning&Tool Invoking	Undefined	Imitation Learning from LLMs	Outcome	
MetaGPT [14]	Specialized Module	Sequential Pipeline	Prompting	Process	
LUMOS [51]	Specialized Module	Sequential Pipeline	Imitation Learning from Humans	Undefined	
Amor	Specialized Module	Finite State Machine	Exploration&Exploitation	Process	

No existing agents fulfill all the required criteria due to their

uncontrollable reasoning logic, static model capability, or sparse/missing feedback signals.

- Part I: Finite-State Machine (FSM)-based Reasoning Logic
 - Structured Thinking.
 - Skill Disentanglement. (cf. Part II)
 - Intervenable Workflow. (cf. Part III)
- Part II: Warming-up open-source LLMs
 - Reasoning steps (modules) of AMOR can be independently optimized with separate public datasets.
- Part III: Adaptation through process feedback
 - AMOR can adapt to specific knowledge environments through process-based supervision to each of the reasoning steps (modules) from users.

• Part I: Finite-State Machine (FSM)-based Reasoning Logic

Driven by Expert Knowledge

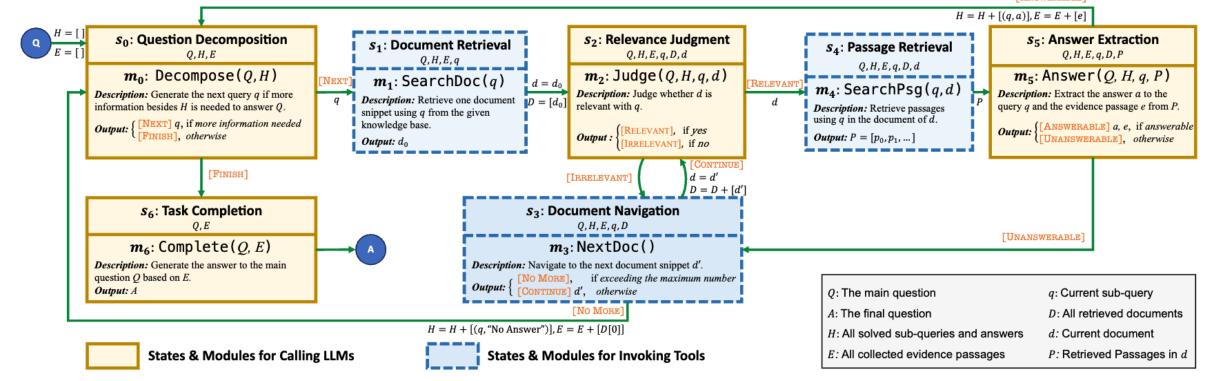
How to define each atomic problem?

How to organize the atomic problems?

Using Specialized Modules Using FSM

- An FSM can be defined as a quadruple:
 - ▷ $S = \{s_0, \ldots, s_{N-1}\}$: a set of states (s_0 : initial state; s_{N-1} : final state)
 - $\succ M = \{m_0, \dots, m_{N-1}\}$: a set of modules, with one-to-one correspondence with S
 - $\mathcal{M}_{\text{TOOL}}$: Tool modules for invoking tools
 - \mathcal{M}_{LLM} : LLM modules for calling LLMs
 - $\succ \ \mathcal{E}$: the set of all possible outputs of $\mathcal M$
 - $\succ \mu: \mathcal{S} \times \mathcal{E} \rightarrow \mathcal{S}$: transition function

- Part I: Finite-State Machine (FSM)-based Reasoning Logic
 - Applying FSM-based Reasoning Logic on Retrieval-based QA:



AMOR's state transition diagram. Each box represents a state and the corresponding module that is executed when entering the state. There may be multiple categories of execution results distinguished by special branch tokens such as "[NEXT]." Then AMOR determines the next state based on the branch tokens.

• Part II: Warming-up open-source LLMs

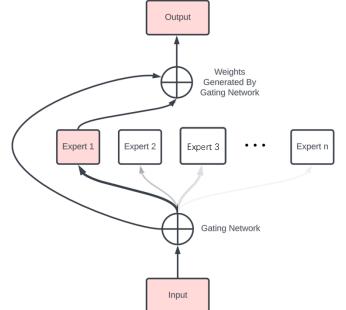
			Knowladge Augmentation
• Data	Original Sample		Knowledge Augmentation SearchDoc(Query = \hat{q}_0 , title \neq "Chick Chick Boom")
	Question Q :On what date did the publisher of Chick Chick Boom unveil its new systems?		d_0 (title: Chick-fil-A) The first Chick-fil-A opened in 1967, in the
	Decomposed Sub-Queries (\hat{q}_i), Answers (\hat{a}_i) and Evidence Passages (\hat{e}_i):		SearchPsg(Query = \hat{q}_{0} , title = "Chick Chick Boom") / \hat{e}_{0}
	\hat{q}_0 Who was the publisher of Chick Chick Boom? \hat{a}_0 Nintendo \hat{e}_0 (title: Chick Chick Boom) Chick Chick Boom is an online Adobe Flash game created for Easter 2007 by German developer Extra Toxic and sponsored by Nintendo of Europe	-+>	$p_{0,0}$ (title: Chick Chick Boom) After Extra Toxic took the game $p_{0,1}$ (title: Chick Chick Boom) The chicks will bounce throughout their $p_{0,2}$ (title: Chick Chick Boom) Each drawing is given an accuracy rating
	\widehat{j}_4 What day did Nintendo unveil the new systems?		SearchDoc(Query = \hat{q}_1 , title \neq "Nintendo Entertainment System") d_1 (title: Nintendo Character) Mario is a character created by the
	\hat{a}_1 October 18, 1985 \hat{e}_1 (title: Nintendo Entertainment System) Nintendo seeded these first systems to limited American test markets starting in New York City on October 18, 1985 Final Answer \hat{A} : October 18, 1985	+	SearchPsg(Query = \hat{q}_1 , title = "Nintendo Entertainment System")/ \hat{e}_1 $p_{1,0}$ (title: Nintendo Entertainment System) After developing several $p_{1,1}$ (title: Nintendo Entertainment System) The NES is one of the best $p_{1,2}$ (title: Nintendo Entertainment System) Following a series of arcade

Decompose	Judge	ן נ	Answer	Complete
Main Question: Q Output: [Next] \hat{q}_0	Main Question: Q Next Sub-Query: \hat{q}_0	11	Main Question: Q Next Sub-Query: \hat{q}_0	Main Question: Q Passages: [1] $\hat{e}_0[2] \hat{e}_1$
Main Question: Q Solved Sub-Queries:	Document Snippet: $\hat{e}_0 \mid \mid d_0 \mid \mid p_{0,0} \mid \mid p_{0,1} \mid \mid p_{0,2}$ Output: [Relevant] [Irrelevant] [Relevant] [Relevant] [Relevant]		Passages: [1] \hat{e}_0 [2] $p_{0,1}$ [3] $p_{0,2}$ [1] $p_{0,0}$ [2] $p_{0,1}$ [3] $p_{0,2}$ Output: [Answerable] Answer: \hat{a}_0 ; Relevant Passage ID: [1] [] [Unanswerable]	Output: \hat{A}
1. Q: \hat{q}_0 A: $\hat{\hat{a}}_0$ Output: [Next] \hat{q}_1	Main Question: <i>Q</i> Solved Sub-Queries:	Ш	Main Question: Q Solved Sub-Queries:	
Main Question: Q Solved Sub-Queries: 1. Q: \hat{q}_0 A: \hat{a}_0	1. Q: \hat{q}_0 A: \hat{a}_0 Next Sub-Query: \hat{q}_1 Document Snippet: $\hat{e}_1 \mid d_1 \mid p_{1,0} \mid p_{1,1} \mid p_{1,2}$	Ш	1. Q: \hat{q}_0 A: \hat{a}_0 Next Sub-Query: \hat{q}_1 Passages: [1] $p_{0,2}$ [2] \hat{e}_1 [3] $p_{0,1}$ [1] $p_{1,2}$ [2] $p_{1,0}$ [3] $p_{1,1}$	
1. Q , q_0 A, a_0 2. Q ; \hat{q}_1 A; \hat{a}_1 Output: [Finish]	Output: [Relevant] [Irrelevant] [Relevant] [Relevant] [Relevant]		Output: [Answerable] Answer: \hat{a}_1 ; Relevant Passage ID: [2] [Unanswerable]	

On the top left is a sample question from Musique, providing **ample information** for constructing training examples for four LLM modules of AMOR (bottom). We augment **extra knowledge** for the **Judge** and **Answer** module by invoking the **SearchDoc** and **SearchPsg** tools (top right). In each example, we use "||" to separate different examples for training.

- Part II: Warming-up open-source LLMs
 - Model: Module-Aware Mixture-of-Experts (MA-MoE). When AMOR executes a certain module, its module index will be provided to the routers of the model to indicate which expert shoul
 - Training:

$$\mathcal{L}_1 = \mathbb{E}_{m \in \mathcal{M}_{\text{LLM}}, (\hat{s}, \hat{y}) \in \mathcal{D}_m} - \lambda_m \log \pi_{\theta_m}(\hat{y}|\hat{s})$$



• Part III: Adaptation through process feedback

Algorithm 1 FSM-based Reasoning Logic **Algorithm 2** Adaptation through Process Feedback **Input:** Agent at the state $s = s_0$; Q: Question. **Input:** $\{\pi_{\theta_m}^{WFT}\}$: Initial Policy; T: Exploration Steps between Ex-**Output:** A: Final Answer; R: Reasoning Process. ploitation; I: Number of Iterations. 1 R = []**Output:** $\{\pi_{\theta_m}\}$: Adapted Policy. 2 while $s \neq s_{N-1}$ do 1 while $i \leftarrow 1$ to I do y = m(s) // Obtain the output y given s $\mathcal{R} = [] //$ Feedback-Refined Reasoning Processes 2 from the corresponding module m. while $t \leftarrow 1$ to T do 3 $R.append(\{$ "state": s, "output": $y\})$ // Exploration 5 A = yReceive an input question Q. 4 6 return A, RCollect AMOR_{θ}'s reasoning process R. // Algorithm 1 5 // Feedback Collection for Each LLM Module foreach Step $r_k \in R$ $(k = 0, 1, 2, \dots)$ do 6 Extract the state s_k and output y_k from r_k . 7 if The corresponding module $m_k \in \mathcal{M}_{LLM}$ then 8 $\widetilde{y}_k, o_k = \begin{cases} y_k, 1 & \text{if } f_k = \text{``right''}, \\ y_k, 0 & \text{if } f_k = \text{``wrong''}, \\ f_k, 1 & \text{if } f_k \text{ is refinement.} \end{cases}$ Collect feedback f_k for s_k and y_k . 9 Determine \tilde{y}_k and o_k based on f_k . // Eq. 2 10 \mathcal{R} .append($[s_k, \tilde{y}_k, o_k]$) 11 // Exploitation Optimize $\{\theta_m\}$ to minimize \mathcal{L}_2 on \mathcal{R} . // Eq. 3 12 13 return $\{\pi_{\theta_m}\}$ $\mathcal{L}_2 = \mathbb{E}_{m \in \mathcal{M}_{\text{LLM}}, (s_k, \tilde{y}_k, o_k) \in \mathcal{R}_m} - \lambda_m [o_k - \beta \log (\pi_{\theta_m}(\tilde{y}_k | s_k) / \pi_{\theta_m}^{\text{WFT}}(\tilde{y}_k | s_k))]$

Empirical Evaluation of AMOR

Dataset	Knowledge Base	Avg. Len	# Train	# Val	# Test
HotpotQA	Wikipedia Articles	138	2,000	100	500
PubMedQA	PubMed Abstracts	303	401	44	445
QASPER	One NLP Paper	102	700	45	382

Datasets for adaptation and evaluation. Avg. Len refers to the average length of passages in the corresponding knowledge base, counted by the GPT tokenizer.

Empirical Evaluation of AMOR

• FSM-based reasoning logic outperforms prior frameworks by 30~40%

Method	Base LLM	HotpotQA EM F1		PubMedQA ACC	QASPER EM F1	
	W	ithout F	'ine-Tuniı	ng		
ReAct	L-7B	12.2	16.6	61.8	6.0	19.2
$\mathbf{AMOR}_{\mathrm{w/o\ FT}}$	L-7B	26.0	34.6	62.9	4.5	21.3
СоТ	GPT-3.5	28.0 [‡]	-	N/A	N/A	N/A
OneR	GPT-3.5	33.4	42.1	72.6	6.8	23.3
ReAct	GPT-3.5	30.8	38.8	58.2	5.8	27.0
ReWoo	GPT-3.5	30.4^{\dagger}	40 .1 [†]	-	-	-
$\mathbf{AMOR}_{\mathrm{w/o\ FT}}$	GPT-3.5	39.6	<u>49.3</u>	68.8	10.0	30.8
СоТ	GPT-4	45.0 [‡]	-	N/A	N/A	N/A
ReAct	GPT-4	$\overline{42.0}^{\ddagger}$	-	62.1	7.1	26.2
$AMOR_{\rm w/o\ FT}$	GPT-4	55.2	65.2	80.0	11.5	37.4

Experiment results when with two-stage fine-tuning

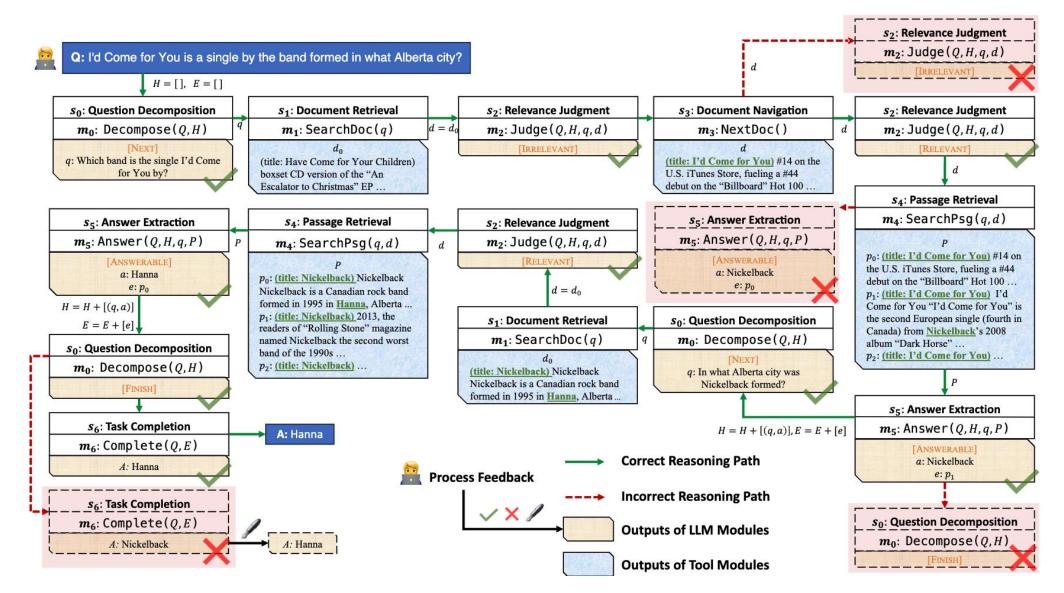
Empirical Evaluation of AMOR

Process feedback is more effective than outcome feedback.

Method	Base LLM	HotpotQA		PubMedQA	QASPER				
		EM	F1	ACC	EM	F1			
	With Fine-Tuning								
OneR*	L-7B	34.8	43.8	75.3	11.0	25.5			
Self-RAG	L-7B	22.4	32.9	62.6	2.1	17.9			
AgentLM	L-7B	22.0^{\dagger}	-	64.9	4.2	20.2			
FIREACT	L-7B	26.2^{\dagger}	-	66.1	6.5	18.4			
LUMOS	L-7B	29.4^{\dagger}	-	70.3	7.1	19.5			
$\mathbf{AMOR}_{\mathrm{Process}}^{*}$	L-7B	45.8	54.9	81.1	19.1	35.3			
AMOR _{WFT}	L-7B	33.6	41.9	73.4	11.1	$\overline{23.6}$			
$\mathbf{AMOR}_{\mathbf{Outcome}}^*$	✓L-7B	40.8	49.3	77.5	9.4	25.4			
AgentLM	L-13B	29.6 [†]	-	67.9	7.1	24.4			
$\mathbf{AMOR}_{\mathrm{Process}}^{*}$	L-13B	48.6	55.3	82.2	18.1	38.0			
AMOR _{WFT}	L-13B	36.8	44.1	74.6	15.2	27.3			
$\mathbf{AMOR}_{\mathrm{Outcome}}^*$	L-13B	42.4	51.6	80.1	9.9	26.5			

Experiment results when without fine-tuning

Case Study



Summary

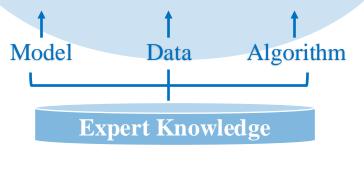
Prior Reasoning Methods	Reasoning Logic	Adaptive Mechanism for New Environments	Human Intervention in the Reasoning Process	
AMOR	FSM. Advantage: The controllable FSM-based reasoning logic has a stronger capacity for handling complex tasks than simple pipelines	Exploration and exploitation. Advantage: It enables AMOR to adapt effectively to specific domains based on human feedback.	Process Feedback. Advantage: It enables humans to provide direct feedback on the individual modules within the FSM-based reasoning process.	Question Decomposition Task Completion Question Decument Retrieval Answer Retrieval Document Navigation Question Retrieval Answer Retrieval Answer Retrieval Answer Retrieval Answer Retrieval Answer Retrieval
Retrieval-Augmented Generation (e.g., Self-RAG)	Sequential Pipeline. Drawback: It is difficult to handle complex tasks.	Undefined	Undefined	$Q \longrightarrow Retrieval \longrightarrow Relevance \\ Judgment \longrightarrow Generation \longrightarrow A$
Agents with Modular Reasoning (e.g., LUMOS)	Sequential Pipeline. Drawback: It is difficult to handle complex tasks.	Prompting or Imitation Learning from Humans/LLMs. Drawbacks: The former often leads to suboptimal results, while the latter suffers from the scarcity of high-quality data.	Undefined	Q Planning Grounding Execution
Agents with Free-Form Reasoning (e.g., AgentLM, FireAct)	Undefined	Prompting or Imitation Learning from Humans/LLMs. Drawbacks: The former often leads to suboptimal results, while the latter suffers from the scarcity of high-quality data.	Outcome Feedback. Drawbacks: (1) Outcome feedback alone is often too sparse and insufficient to improve the intermediate reasoning steps effectively; (2) The reasoning steps taken by LLMs can frequently contradict or deviate from the desired outcome.	Q Step 1 Step N A Specialized Module Finite State Machine Free-Form Reasoning or Tool Sequential Pipeline
				Invoking Step Undefined Inter-Step Dependency

Elaboration regarding the advantages and drawbacks when comparing AMOR with prior agents

The reasoning processes of AMOR and related works.

Future Work

- Math Word Problems
- Coding
- Question-Answering



Specialist

Agent

Core Questions

How to define each atomic problem?

How to organize the atomic problems?

- Deduction
 - Induction •
- Abduction •

General Algorithms/Data/Systems...

Generalist

