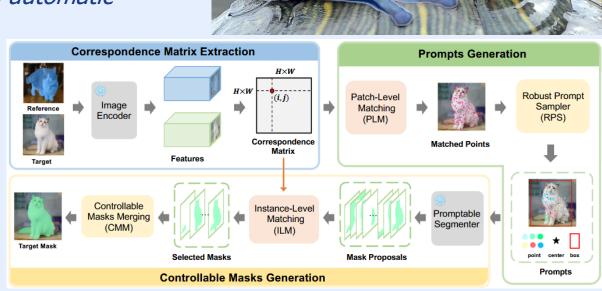
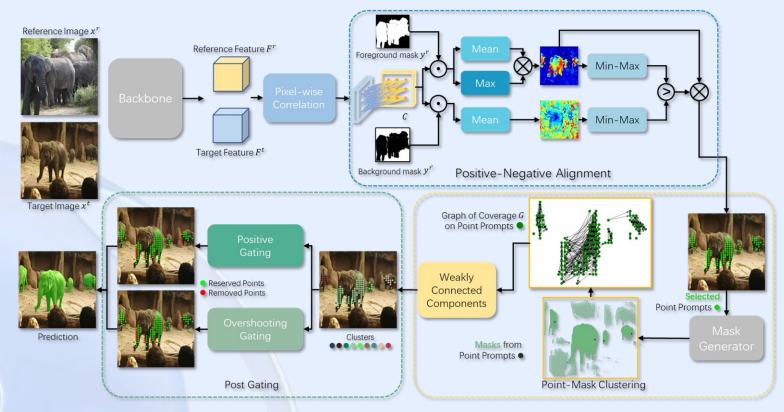


Angi Zhang, Guangyu Gao, Jianbo Jiao, Chi Harold Liu, and Yunchao Wei



Motivation

- Segment Anything Model (SAM) relies on point/box/mask prompts
 - Cannot apply for automatic semantic segmentation
- Previous methods (Matcher, PerSAM) introduce Few-shot
 Semantic Segmentation (FSS) for SAM-based automatic
 semantic segmentation.
 - Lots of external hyperparameters
 - Low efficiency
 - Iterative mask generation

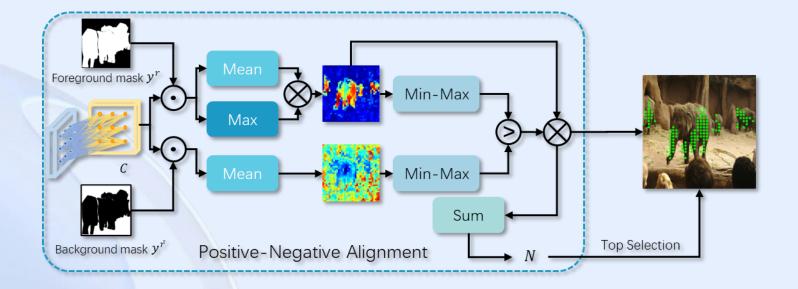

^[1] Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., ... & Girshick, R. (2023). Segment anything. In *Proceedings of the IEEE/CVF International Conference on Computer Vision* (pp. 4015-4026). [2] Zhang, R., Jiang, Z., Guo, Z., Yan, S., Pan, J., Ma, X., ... & Li, H. (2023). Personalize segment anything model with one shot. arXiv preprint arXiv:2305.03048.

^[3] Liu, Y., Zhu, M., Li, H., Chen, H., Wang, X., & Shen, C. (2023). Matcher: Segment anything with one shot using all-purpose feature matching. arXiv preprint arXiv:2305.13310.

Our Contribution

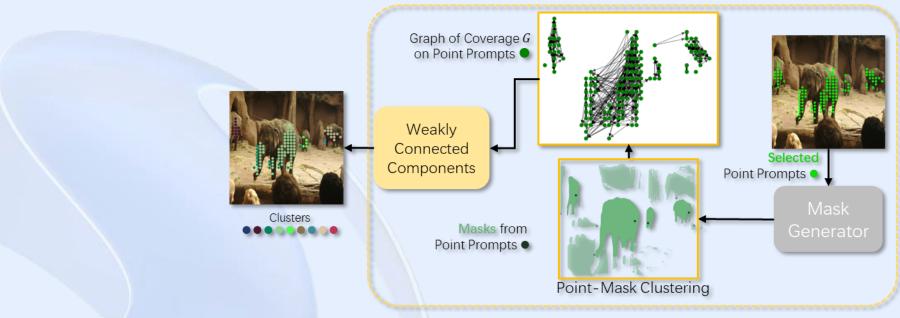
- ✓ Training-Free
- ✓ External-Hyperparameter-Free
- ✓ No iterative mask generation

- ✓ Fast inference within 2s per image*
- ✓ New state-of-the-art performance
- ✓ Effective in various domains

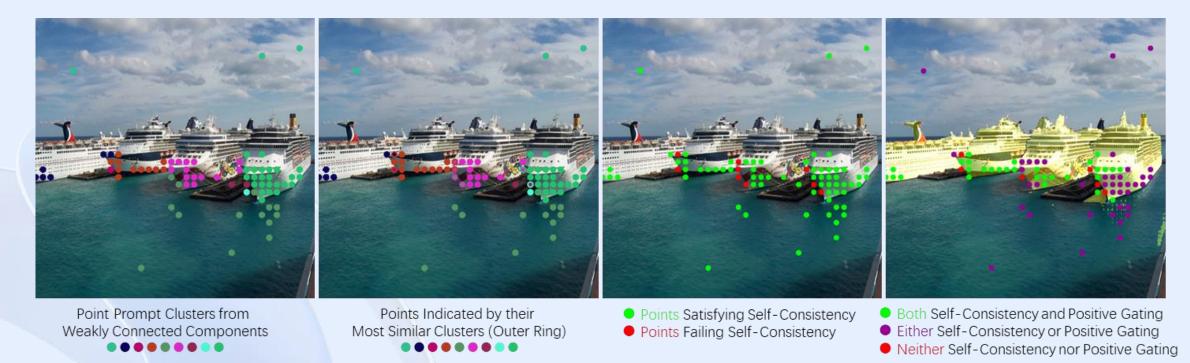


^{*} Evaluated on a single NVIDIA RTX2080Ti

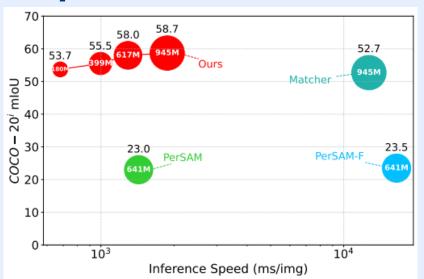
Positive-Negative Alignment


- \triangleright C: Pixel-wise correlation ($hw \times hw$) between reference and target features.
- Mean/Max: Get mean/max value on the dimension corresponding to reference

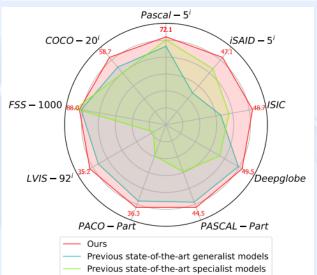
- features and generate similarity maps.
- Min-Max: Highlight the similarity values of foreground/background.


Point-Mask Clustering

- Each point P_l corresponds to a unique mask \hat{y}_l from SAM.
- Selected Points from fine-grained features need to align to masks from coarsegrained features.
- PMC module constructs directed graph G
 according to the coverage of masks over
 other points.
 - Each weakly connected component become a cluster.



Post Gating


- Positive Gating: Compare number of positive and negative pixels according to positive and negative similarity maps.
- Overshooting Gating: Retain points having highest similarity on regions of its corresponding mask (with distance factor).

Experiments

Methods	Pascal-5i		COCO-20i		FSS-1000		LVIS-92i	
Wiethous	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
specialist model								
HSNet [14][CVPR21]	66.2	70.4	41.2	49.5	86.5	88.5	17.4	22.9
VAT [50][ECCV22]	67.9	72.0	41.3	47.9	90.3	90.8	18.5	22.7
HDMNet [44][CVPR23]	69.4	71.8	50.0	56.0	-	-	-	-
AMFormer [45][NeurIPS23]	70.7	73.6	51.0	57.3	-	-	-	-
generalist model								
PerSAM [12][ICLR24]	43.1	-	23.0	-	71.2	-	11.5	-
PerSAM-F [12][ICLR24]	48.5	-	23.5	-	75.6	-	12.3	-
Matcher [13][ICLR24]	68.1	74.0	52.7	60.7	87.0	89.6	33.0	40.0
VRP-SAM [49][CVPR24]	71.9	-	53.9	-	-	-	-	-
Ours	72.1	82.6	58.7	66.8	88.0	88.9	35.2	44.2

	One-shot Part Seg.		Cross Domain FSS					
Methods	PASCAL-Part	PACO-Part	Deep	globe	IS	IC	iSAI	D-5 ⁱ
	1-shot	1-shot	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
specialist model								
HSNet [14][CVPR21]	32.4	22.6	29.7	35.1	31.2	35.1	34.1	40.4
DRA [51][CVPR24]	-	-	41.3	50.1	40.8	48.9	-	-
FRINet [52][TGRS23]	-	-	-	-	-	-	42.6	44.5
generalist model								
PerSAM [12][ICLR24]	32.5	22.5	31.4	-	23.9	-	19.2	-
PerSAM-F [12][ICLR24]	32.9	22.7	35.0	-	23.6	-	20.3	-
Matcher [13][ICLR24]	42.9	34.7	48.1	50.9	38.6	35.0	33.3	34.3
Ours	44.5	36.3	49.5	57.7	48.7	55.2	47.1	52.4

Ablation Studies

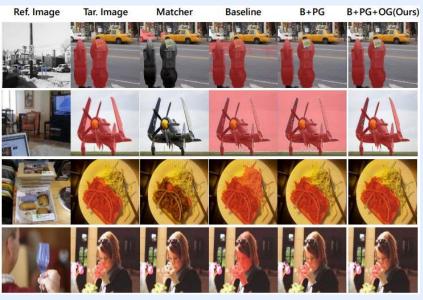
Table 3: Ablation study of Point Selection.

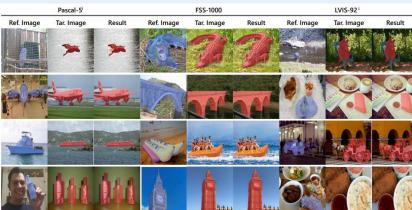
S_{mean}^+	S_{max}^+	S_{mean}^-	Top N	mIoU
✓		✓	✓	53.1
	✓	✓	✓	54.1
✓	\checkmark	✓		56.4
\checkmark	\checkmark		✓	51.5
\checkmark	\checkmark	✓	✓	58.7

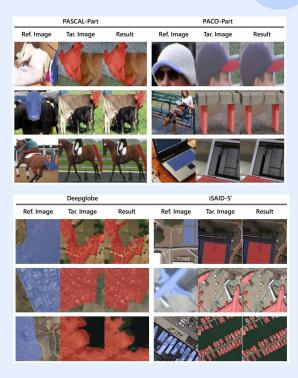
Table 4: Ablation study of PMC and Post-Gating.

PG		OG		COCO-20i	LVIS-92i
Strong	Weak	Strong	Weak		
				44.0	24.2
	✓			57.1	34.3
✓				57.1	33.9
	✓	✓		56.7	35.2
	✓		✓	58.7	35.2
	k-mea	ans++		57.5	34.0

Table 5: Ablation study of positive gating on each cluster. M.G. represents the Mask Growth algorithm.


Strategies	M.G.	COCO-20i	PASCAL-Part
Sum	✓	55.3 58.6	39.1 44.3
Num	√	57.1 58.7	42.2 44.5


Table 6: Ablation on the strategies of Self-Consistency measurement.


Strategies	mIoU	Δ
None	57.1	0.0
Point Sim.	56.7	-0.4
MAP Sim.	57.7	+0.6
Mean Sim. W/o dist	49.1	-8.0
Mean Sim. (Ours)	58.7	+1.6

Visualization

