

Advection Augmented Convolutional Neural Networks

Niloufar Zakariaei¹, Siddharth Rout¹, Eldad Haber¹, Moshe Eliasof²

¹University of British Columbia, Vancouver, Canada ²University of Cambridge, Cambridge, United Kingdom

Project Page: <u>https://github.com/Siddharth-Rout/deepADRnet</u> Paper: <u>https://arxiv.org/abs/2406.19253</u>

Introduction and Motivation

Convolutional Neural Networks (CNNs) struggle with tasks involving long-range information transport, which are common in applications like weather prediction and disease propagation.

Need for non-local operations in CNNs to handle such tasks efficiently

Key Ideas

Augment CNNs with Advection, Diffusion, and Reaction (ADR) Process

- Advection: Non-local transport of information across the image.
- **Diffusion**: Smooths features locally between neighboring pixels.
- **Reaction**: Enables pointwise interaction among channels.

Semi-Lagrangian Push Operator: Allows efficient, non-local advection in a single step.

ADR Network Structure

• **Overview**: Combines Advection, Diffusion, and Reaction within a CNN to capture complex transport processes in spatio-temporal data.

ADR Network Structure (Cont.)

Experimental Results

Performance on Scientific Datasets

- CloudCast dataset
- PDEBench SWE Dataset

Method	NRMSE \downarrow
UNet [52]	8.3e-2
PINN [52]	1.7e-2
MPP-AVIT-TI [36]	6.6e-3
ORCA-SWIN-B [47]	6.0e-3
FNO [52]	4.4e-3
MPP-AVIT-B [36]	2.4e-3
MPP-AVIT-L [36]	2.2e-3
ADRNet	1.3e-4

Results on PDEBench SWE Dataset

-0.15 Ground-Truth Prediction

0.15

- 0.10

0.05

0.00

-0.05

-0.10

Prediction and error for the SWE problem using our ADRNet

Method	SSIM (†)	PSNR (†)				
AE-ConvLSTM [70]	0.66	8.06				
MD-GAN [67]	0.60	7.83				
TVL1 [56]	0.58	7.50				
Persistent [70]	0.55	7.41				
ADRNet	0.83	38.17				
Results on CloudCast dataset						

Error

Experimental Results (Cont.)

Moving MNIST, KITTI

✓Competitive on video prediction tasks

Method	$MSE\downarrow$	$MAE\downarrow$	Method	MS-SSIM (×10 ⁻²) \uparrow		LPIPS (×10 ⁻²) \downarrow	
MSPred [58]	34.4	-		t+1	t+3	t+1	t+3
MAU [<mark>6</mark>]	27.6	-	SADM [2]	83.06	72 11	1// /1	24 58
PhyDNet [19]	24.4	70.3	$\frac{5}{100} \frac{100}{100} \frac{100}$	75 35	63 52	24.04	24.50
SimVP [53]	23.8	68.9	ComWine [15]	82 00	03.32 N/A	24.04	37.71 N/A
CrevNet [69]	22.3	-	OPT [66]	02.00 92.71	IN/A 60.50	17.20	1N/A 20.20
TAU [54]	19.8	60.3	$\mathbf{D}\mathbf{M}\mathbf{V}\mathbf{E}\mathbf{N}\left(\mathbf{w}_{1}^{\prime},\mathbf{D}\right)\left[22\right]$	02./1 00.06	09.30	12.34	20.29
SwinLSTM [55]	17.7	-	DMVFN (W/0 R) [23]	88.53	78.01	10.70	19.28 19.27
IAM4VP [<mark>46</mark>]	15.3	49.2		85 86	83.62	7 54	9.26
ADRNet	16.1	50.3		05.00	05.02	7.54	7.20
Results on Moving MNIST Results on KITTI							

CAMBRIDGE

Limitations and Future Work

Limitations:

- Optimal for Scientific Data, Less effective for complex video prediction tasks requiring generative capabilities
- Niche Use Cases: Best suited for tasks requiring advection

Future Work:

• Enhanced Generative Capabilities: Adapt for evolving video features.

