Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00						

Improved Bayes Regret Bounds for Multi-Task Hierarchical Bayesian Bandit Algorithms

Jiechao Guan, Hui Xiong

AI Thrust, The Hong Kong University of Science and Technology (Guangzhou), China

{jiechaoguan, xionghui}@hkust-gz.edu.cn

October 16, 2024

Presentation Outline

Background

- Single-Task Bayesian Bandit
- Multi-Task Bayesian Bandit

Algorithms

• Hierarchical Thompson Sampling & Hierarchical BayesUCB

3 Improved Bayes Regret Bounds for Multi-Task Bandit

- Near-Optimal Bayes Regret Bound for HierTS
- Logarithmic Bayes Regret Bound for HierBayesUCB

Improved Bayes Regret Bounds for Multi-Task Semi-Bandit

Improved Bounds for HierTS and HierBayesUCB

5 Experiments

6 Conclusions

Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00		000				
00						

1 Background

- Single-Task Bayesian Bandit
- Multi-Task Bayesian Bandit

2 Algorithms

- Hierarchical Thompson Sampling & Hierarchical BayesUCB
- **3** Improved Bayes Regret Bounds for Multi-Task Bandit
 - Near-Optimal Bayes Regret Bound for HierTS
 - Logarithmic Bayes Regret Bound for HierBayesUCB
- Improved Bayes Regret Bounds for Multi-Task Semi-Bandit
 Improved Bounds for HierTS and HierBayesUCB
- 5 Experiments
- 6 Conclusions

- A stochastic bandit problem is characterized by an unknown parameter θ with an action set A. Each action a ∈ A under the bandit instance θ is associated with a reward distribution P(·|a, θ).
- The reward mean of action a under θ is denoted as
 r(a; θ) = E_{Y~P}(·|a;θ)[Y], and the optimal action under θ is denoted as
 A_{*} = arg max_{a∈A} r(a; θ). In the stochastic linear bandit setting, the
 mean reward of action a ∈ A is r(a, θ) = a^Tθ.
- In Bayesian bandit problem, we further assume that the task parameter θ is independently and identically distributed (i.i.d.) according to a task parameter distribution $\mathbb{P}(\cdot|\mu_*)$, which is characterized by an unknown hyper-parameter μ_* .

ヘロト ヘヨト ヘヨト ヘヨ

Single-Task Semi-Bandit

- In this setting, the action set A = [K] is a set of finite items.
 A = {A ⊆ A : |A| ≤ L} is a family of subsets of A with up to L items, where L ≤ K.
- w ∈ ℝ^K is a weight vector. The weight of a set A ∈ 𝔄 is defined as ∑_{a∈A}w(a). We assume that the weights w are drawn i.i.d. from a distribution, and the mean weight is denoted as w̄ = 𝔼[w].
- We focus on the coherent case [1] which assumes that the agent knows a feature matrix $\Phi \in \mathbb{R}^{K \times d}$, such that $\bar{\mathbf{w}} = \Phi \theta$, where θ is the task parameter drawn from $\mathbb{P}(\cdot | \mu_*)$.
- The reward of a subset $A \in \mathscr{A}$ under the bandit instance θ is defined as $r(A; \theta) = \sum_{a \in A} (\Phi \theta)(a) = \sum_{a \in A} \langle \Phi_a, \theta \rangle$, where Φ_a is the transpose of the *a*-th row of matrix Φ . We further assume $\|\Phi_a\| \leq B$, $\forall a \in \mathcal{A}$.

(ロ) (四) (三) (三)

Hierarchical Multi-Task Bayesian (Semi-)Bandit

- In this setting, the agent interacts with *m* tasks sequentially or concurrently. First, sample the hyper-parameter μ_{*} from a hyper-prior *Q*. Then, for each task *s* ∈ [*m*], sample the task parameter θ_{s,*} independently from distribution P(·|μ_{*}).
- At round $t \ge 1$, the agent interacts with a set of tasks $S_t \subseteq [m]$, takes a series of actions $A_t = (A_{s,t})_{s \in S_t}$, and receives a series of rewards $Y_t = (Y_{s,t})_{s \in S_t}$. In the bandit setting, $Y_{s,t} \sim \mathbb{P}(\cdot | A_{s,t}; \theta_{s,*})$ is a stochastic reward obtained by taking action $A_{s,t}$ in task $s \in S_t$; in the semi-bandit setting, $Y_{s,t} = \{\hat{\mathbf{w}}_{s,t}(a)\}_{a \in A_{s,t}}$ is a series of stochastic rewards, where $\hat{\mathbf{w}}_{s,t} = \bar{\mathbf{w}}_s + \eta_{s,t}$, $\bar{\mathbf{w}}_s = \Phi \theta_{s,*}$, and $\eta_{s,t}$ is a *K*-dimensional random noise.
- The full hierarchical Bayesian bandit/semi-bandit model in the *m*-task learning setting is exhibited as follow for any $t \ge 1, s \in S_t$:

(1)
$$\mu_* \sim Q$$
; (2) $\theta_{s,*}|\mu_* \sim \mathbb{P}(\cdot|\mu_*), \forall s \in [m];$ (3) $Y_{s,t}|A_{s,t}, \theta_{s,*} \sim \mathbb{P}(\cdot|A_{s,t}; \theta_{s,*}).$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Multi-Task Bayes Regret

The goal of hierarchical Bayesian multi-task bandit/semi-bandit learning is to interact with *m* tasks efficiently and minimize the following cumulative *multi-task Bayes regret*:

$$\mathcal{BR}(m,n) = \mathbb{E}\Big[\sum_{t\geq 1}\sum_{s\in\mathcal{S}_t} r(A_{s,*};\theta_{s,*}) - r(A_{s,t};\theta_{s,*})\Big],\tag{1}$$

where $A_{s,*} = \arg \max_{a \in \mathcal{A}} r(a; \theta_{s,*})$ is the optimal action for task $s \in [m]$ in the bandit setting, and $A_{s,*} \in \arg \max_{A \in \mathscr{A}} r(A; \theta_{s,*})$ is the optimal subset for task $s \in [m]$ in the semi-bandit setting.

Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00		000				
00						

1 Background

- Single-Task Bayesian Bandit
- Multi-Task Bayesian Bandit

2 Algorithms

- Hierarchical Thompson Sampling & Hierarchical BayesUCB
- **3** Improved Bayes Regret Bounds for Multi-Task Bandit
 - Near-Optimal Bayes Regret Bound for HierTS
 - Logarithmic Bayes Regret Bound for HierBayesUCB
- Improved Bayes Regret Bounds for Multi-Task Semi-Bandit
 Improved Bounds for HierTS and HierBayesUCB
- 5 Experiments
- 6 Conclusions

Background Algorithms Bounds for Bandit Bounds f ○○ ● ○○○ ○○	or Semi-Bandit Experiments Conclusions References
Algorithm 1 Hierarchical Bayesian Algorithms fo Multi-Task Linear Bandit Setting	r Algorithm 2 Hierarchical Bayesian Algorithms for Multi-Task Combinatorial Semi-Bandit Setting
1: Input: Hyper-prior Q 2: Initialize $Q_1 \leftarrow Q$	1: Input: Hyper-prior Q , features $\Phi \in \mathbb{R}^{K \times d}$ 2: Initialize $Q_1 \leftarrow Q$
3: for $t = 1, 2,$ do	3: for $t = 1, 2,$ do
4: Sample hyper-parameter $\mu_t \sim Q_t$	4: Sample hyper-parameter $\mu_t \sim Q_t$
5: Observe tasks $S_t \subseteq [m]$	5: Observe tasks $S_t \subseteq [m]$
6: for $s \in \mathcal{S}_t$ do	6: for $s \in \mathcal{S}_t$ do
7: Option I (HierTS) :	7: Option I (HierTS):
Compute $\mathbb{P}_{s,t}(\theta \mid \mu_t) \propto \mathcal{L}_{s,t}(\theta) \mathbb{P}(\theta \mid \mu_t)$) Compute $\mathbb{P}_{s,t}(\theta \mid \mu_t) \propto \mathcal{L}_{s,t}(\theta) \mathbb{P}(\theta \mid \mu_t)$
Sample task parameter $\theta_{s,t} \sim \mathbb{P}_{s,t}(\cdot \mid \mu_t)$	Sample task parameter $\theta_{s,t} \sim \mathbb{P}_{s,t}(\cdot \mid \mu_t)$
Take action $A_{s,t} \leftarrow \arg \max_{a \in \mathcal{A}} a^{\top} \theta_{s,t}$	Compute $A_{s,t} = \text{ORACLE}(\mathcal{A}, \mathscr{A}, \Phi \theta_{s,t})$
Option II (HierBayesUCB):	Option II (HierBayesUCB):
Set $U_{t,s,a} = a^{\top} \hat{\mu}_{s,t} + \sqrt{2 \log \frac{1}{\delta}} \ a\ _{\hat{\Sigma}_{s,t}}$, Compute $U_{t,s}(A) = \sum_{a \in A} (a^{\top} \hat{\mu}_{s,t} +$
for any $a \in \mathcal{A}$	$\sqrt{2\log \frac{1}{\delta} \ a\ _{\hat{\Sigma}_{s,t}}}$, for all $A \in \mathscr{A}$
Take action $A_{s,t} \leftarrow \arg \max_{a \in \mathcal{A}} U_{t,s,a}$	Compute $A_{s,t} = \arg \max_{A \in \mathcal{A}} U_{t,s}(A)$
8: Observe reward $Y_{s,t}$	8: Choose $A_{s,t}$ and observe $\{\hat{\mathbf{w}}_{s,t}(a)\}_{a \in A}$.
9: end for	9: end for
10: Update Q_{t+1}	10: Update Q_{t+1}
11: end for	11: end for

• Sampling $\theta_{s,t} \sim \mathbb{P}_{s,t}(\cdot|\mu_t)$ is equivalent to $\theta_{s,t} \sim \mathbb{P}(\theta_{s,*} = \theta|H_t)$

• $\hat{\mu}_{s,t}$ and $\hat{\Sigma}_{s,t}$ are the expectation and covariance of $\theta_{s,*} = \theta | H_{t,*}$

Improved Bayes Regret Bounds for Multi-Task Hierarchical Bayesian Bandit Algorithms (NeurIPS2024)

Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00		000				
00						

Background

- Single-Task Bayesian Bandit
- Multi-Task Bayesian Bandit

2 Algorithms

• Hierarchical Thompson Sampling & Hierarchical BayesUCB

3 Improved Bayes Regret Bounds for Multi-Task Bandit

- Near-Optimal Bayes Regret Bound for HierTS
- Logarithmic Bayes Regret Bound for HierBayesUCB
- Improved Bayes Regret Bounds for Multi-Task Semi-Bandit
 Improved Bounds for HierTS and HierBayesUCB
- 5 Experiments
- 6 Conclusions

Background	Algorithms ○	Bounds for Bandit ●○○	Bounds for Semi-Bandit	Experiments	Conclusions	References

Table 1: Different Bayes regret bounds for multi-task *d*-dimensional linear (or *K*-armed) bandit problem in the sequential setting. *m* is the number of tasks, *n* the number of iterations per task, A is the action set. **Bayes Regret Bound =Bound I + Bound II + Negligible Terms**, where **Bound I** is the regret bound for solving *m* tasks, **Bound II** the regret bound for learning hyper-parameter μ_* .

Bayes Regret Bound	$ \mathcal{A} $	Bound I	Bound II
[25, ICML2021,Thm 3]	Finite	$O\left(m\sqrt{Kn\log n}\right)$	$O\left(n^2 K \sqrt{m \log\left(n\right) \log\left(K\right)}\right)$
[7] NeurIPS2021, Thm 5]	Finite	$O(m\sqrt{dn(\log n)\log(n^2 \mathcal{A})})$	$O\left(\sqrt{dmn(\log m)\log\left(n \mathcal{A} \right)}\right)$
[17, AISTAT2022, Thm 3]	Infinite	$O\left(md\sqrt{n\log\left(\frac{n}{d}\right)\log\left(mn\right)}\right)$	$O\left(d\sqrt{mn\log\left(m\right)\log\left(mn\right)}\right)$
Our Theorem 5.1	Infinite	$O\left(md\sqrt{n\log\left(\frac{n}{d}\right)}\right)$	$O\left(d\sqrt{mn\log\left(\frac{m}{d}\right)}\right)$
Our Theorem 5.2	Finite	$O\left(md\log\left(\frac{n}{d}\right)\log\left(mn\right)\right)$	$O\left(d\log\left(\frac{m}{d}\right)\log\left(mn\right)\right)$

Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00		000				

Near-Optimal Bayes Regret Bound for HierTS

Theorem 5.1 (*Near-Optimal Sequential Regret*) Let $|S_t| = 1$ for any round t. Then in the multi-task Gaussian linear bandit setting, the Bayes regret upper bound of HierTS is as follow:

$$\mathcal{BR}(m,n) \le d\sqrt{2mn} \sqrt{mc_1 \log\left(1+\frac{n}{d}\right) + c_2 \log\left(1+\frac{m \operatorname{Tr}(\Sigma_q \Sigma_0^{-1})}{d}\right)}$$

- The term $md\sqrt{nc_1 \log (1 + n/d)}$ represents the regret bound for solving *m* bandit tasks, whose parameters $\theta_{s,*}$ are drawn i.i.d. from the prior distribution $\mathcal{N}(\mu_*, \Sigma_0)$. Under this assumption, no task provides information for any other task, and hence this bound is linear in *m*. Similar observation was also pointed out by [2, 3, 4].
- The term $d\sqrt{mnc_2 \log(1+mtr(\Sigma_q \Sigma_0^{-1})/d)}$ represents the regret bound for learning the hyper-parameter μ_* .

Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00		000				

Logarithmic Regret Bound for HierBayesUCB

Theorem 5.2 (Logarithmic Sequential Regret of HierBayesUCB) Let $|S_t| = 1$ for any round t, and the action set A is finite with $|A| < \infty$. Then in the multi-task Gaussian linear bandit setting, for any $\delta \in (0, 1), \epsilon > 0$, the Bayes regret $\mathcal{BR}(m, n)$ of HierBayesUCB is upper bounded by

 $mn\Big[\epsilon + 4B\delta\lambda_1^{\frac{1}{2}}(\Sigma_0 + \Sigma_q)\left(d^{\frac{1}{2}} + \|\mu_q\|_{\hat{\Sigma}_{s,1}^{-1}}\right)|\mathcal{A}|\Big] + \mathbb{E}[\frac{16d\log\frac{1}{\delta}}{\Delta_{\min}^{\epsilon}}]\Big[mc_1\log\left(1 + \frac{n}{d}\right) + c_2\log\left(1 + \frac{m\operatorname{Tr}(\Sigma_q\Sigma_0^{-1})}{d}\right)\Big].$

- If let $\delta = 1/(mn)$, $\epsilon = 1/(mn)$ and $\Delta_{\min} >> \epsilon$, the above sequential regret bound is of $O(\log (mn)(md \log (\frac{n}{d}) + d \log (\frac{m}{d})))$.
- We can obtain sharper bounds by setting δ, ϵ as different values. For example, by setting $\delta = 1/n$, our regret bound becomes $O([mn\epsilon + m] + \frac{\log n}{\Delta_{\min}^{\epsilon}}m\log n)$, which is of order $O(m\log^2 n)$ if we set $\epsilon = 1/(mn)$ and the gap $\Delta_{\min} >> \epsilon$ is large.

Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00		000				
00						

Background

- Single-Task Bayesian Bandit
- Multi-Task Bayesian Bandit

2 Algorithms

- Hierarchical Thompson Sampling & Hierarchical BayesUCB
- **3** Improved Bayes Regret Bounds for Multi-Task Bandit
 - Near-Optimal Bayes Regret Bound for HierTS
 - Logarithmic Bayes Regret Bound for HierBayesUCB

Improved Bayes Regret Bounds for Multi-Task Semi-Bandit Improved Bounds for HierTS and HierBayesUCB

5 Experiments

6 Conclusions

Improved Bayes Regret Bounds for Multi-Task Hierarchical Bayesian Bandit Algorithms (NeurIPS2024)

Background	Algorithms ○	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References

Table 2: Different Bayes regret bounds for multi-task semi-bandit problem. Bayes Regret Bound =Bound I + Bound II + Negligible Terms. m is the number of tasks, n the number of iterations per task, K the size of action set, L the number of pulled actions at each round $(1 \le L \le K)$. Bound I is the regret bound for solving m tasks, Bound II the regret bound for learning hyper-parameter μ_* .

Bayes Regret Bound A		Bound I	Bound II
[7, Theorem 6]	[K]	$O\left(m\sqrt{nKL\log n\log\left(nK\right)}\right)$	$O\left(\sqrt{mnKL\log m\log\left(nK\right)}\right)$
Our Theorem 5.4	[K]	$O\left(m\sqrt{nL\log\left(nL\right)\log\left(nK\right)}\right)$	$O\left(L^{\frac{3}{2}}\sqrt{mn\log m\log\left(nK\right)}\right)$
Our Theorem 5.5	[K]	$O(mL\log(nL)\log(mnK))$	$O(L^3 \log(m) \log(mnK))$

Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00 00						

Bayes Regret Bounds for Semi-Bandit

Theorem 5.4 Let $|S_t| = 1$ for any $t \ge 1$. Let $c \ge \sqrt{2 \ln \left(\frac{nKB\lambda_1(\Sigma_0)}{\sqrt{2\pi}}\right)}$, then in the multi-task Gaussian semi-bandit setting, the Bayes regret upper bound of combinatorial HierTS is:

$$\mathcal{BR}(m,n) \le m + c\sqrt{mnL}\sqrt{2c_1m\log\left(1+\frac{nL}{d}\right) + 2c_4Ld\log\left(1+\frac{m\operatorname{Tr}(\Sigma_0^{-1}\Sigma_q)}{d}\right)}.$$

• HierTS obtains $O(m\sqrt{n}\log n)$ Bayes regret for semi-bandit.

Theorem 5.5 Let $|S_t| = 1$ for any $t \ge 1$. Then for any $\epsilon > 0, \delta \in (0, 1)$, in the multi-task Gaussian semi-bandit setting, the Bayes regret $\mathcal{BR}(m, n)$ of combinatorial HierBayesUCB is bounded by

 $mn \left[\epsilon + 4LBK\delta\lambda_{1}^{\frac{1}{2}}(\Sigma_{0} + \Sigma_{q})(d^{\frac{1}{2}} + \|\mu_{q}\|_{\tilde{\Sigma}_{s,1}^{-1}})\right] + \mathbb{E}\left[\frac{8L\log\frac{1}{\delta}}{\Delta_{\min}^{\epsilon}}\right] \left[2c_{1}m\log\left(1 + \frac{nL}{d}\right) + 2c_{4}Ld\log\left(1 + \frac{m\operatorname{Tr}(\Sigma_{0}^{-1}\Sigma_{q})}{d}\right)\right]$

• HierBayesUCB obtains $O(m \log (mn) \log n)$ Bayes regret in for semi-bandit.

Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00						

Background

- Single-Task Bayesian Bandit
- Multi-Task Bayesian Bandit

2 Algorithms

- Hierarchical Thompson Sampling & Hierarchical BayesUCB
- **3** Improved Bayes Regret Bounds for Multi-Task Bandit
 - Near-Optimal Bayes Regret Bound for HierTS
 - Logarithmic Bayes Regret Bound for HierBayesUCB
- Improved Bayes Regret Bounds for Multi-Task Semi-Bandit
 Improved Bounds for HierTS and HierBayesUCB

Experiments

6 Conclusions

Figure 1: Regrets of HierTS w.r.t. different hyper-parameters.

< E

Image: A math the state of t

Figure 2: Regrets of HierBayesUCB w.r.t. different hyper-parameters.

< E

・ロト ・日 ・ ・ ヨト

Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00 00						

Background

- Single-Task Bayesian Bandit
- Multi-Task Bayesian Bandit

2 Algorithms

- Hierarchical Thompson Sampling & Hierarchical BayesUCB
- **3** Improved Bayes Regret Bounds for Multi-Task Bandit
 - Near-Optimal Bayes Regret Bound for HierTS
 - Logarithmic Bayes Regret Bound for HierBayesUCB
- Improved Bayes Regret Bounds for Multi-Task Semi-Bandit
 Improved Bounds for HierTS and HierBayesUCB
- **5** Experiments

6 Conclusions

Background	Algorithms ○	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References

Conclusions

Our theoretical contributions are four-fold:

- In the case of infinite action set, we provide a tighter Bayes regret bound $O(m\sqrt{n\log n})$ for HierTS. This bound improves the latest result by a factor of $O(\sqrt{\log (mn)})$.
- In the case of finite action set, we propose a novel HierBayesUCB algorithm, and provide gap-dependent logarithmic Bayes regret bound $O(m \log (mn) \log n)$ for it.
- We generalize the above regret bounds for linear bandit from sequential setting to the more challenging concurrent setting.
- We extend both HierTS and HierBayesUCB algorithms to the more general multi-task combinatorial semi-bandit setting and derive improved Bayes regret bounds.

Improved Bayes Regret Bounds for Multi-Task Hierarchical Bayesian Bandit Algorithms (NeurIPS2024)

Background	Algorithms	Bounds for Bandit	Bounds for Semi-Bandit	Experiments	Conclusions	References
00 00						

References

- Zheng Wen and Benjamin Van Roy. "Efficient Exploration and Value Function Generalization in Deterministic Systems". In: *NeurIPS*. 2013, pp. 3021–3029.
- [2] Branislav Kveton et al. "Meta-Thompson Sampling". In: ICML. 2021, pp. 5884–5893.
- [3] Soumya Basu et al. "No Regrets for Learning the Prior in Bandits". In: *NeurIPS*. 2021, pp. 28029–28041.
- [4] Joey Hong et al. "Hierarchical Bayesian Bandits". In: AISTATS. 2022, pp. 7724–7741.