

### Towards Croppable Implicit Neural Representations

Maor Ashkenazi, Eran Treister

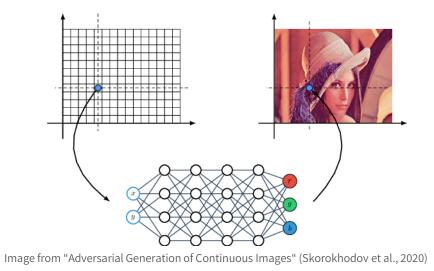
Department of Computer Science, Ben-Gurion University of the Negev

# Introduction

Implicit Neural Representations (INRs) have gained popularity due to their ability to encode natural signals in neural networks weights

\ By modeling the signal as a prediction task from some coordinate system to the signal values

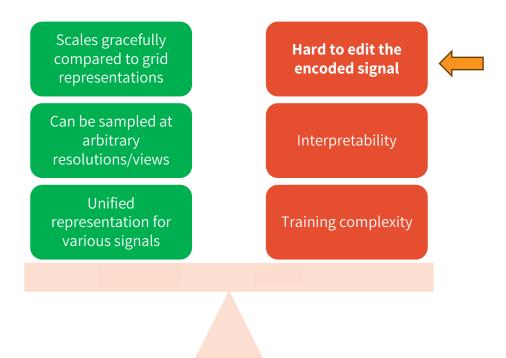
A popular choice for the network is a fully connected network (MLP)





INRs have many advantages over discrete representations, and allow for interesting applications

However, their black-box nature presents disadvantages





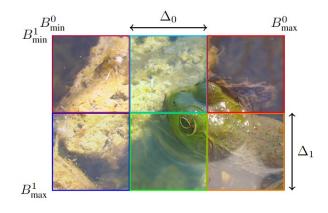
We focus on the basic signal editing operation of **cropping** 

#### We wish to **remove parts of the encoded signal, with a proportional decrease of INR weights**

- \ Without retraining/finetuning
- \ Without compromising on encoding quality

## Partitioning the Signal

We begin by dividing the input signal space



Each dimension is split into  $C_i$  equally sized partitions, resulting in  $\prod_{i=1}^n C_i$  partitions

Separate weights will be dedicated for each partition

The granularity of partitioning will determine the detail of which we crop the INR

## A Straightforward Approach

Assigning separate weights to different partitions by training a compact INR-per-partition

- Was done by KiloNeRF and related methods
  - \ Allowed for significant speed benefit, both in terms of training and inference

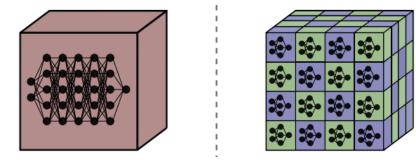


Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (Reiser et al., 2021)

## A Straightforward Approach

Assigning separate weights by training a compact INR-per-partition

- Was done by KiloNeRF and related methods
  - \ Allowed for significant speed benefit, both in terms of training and inference

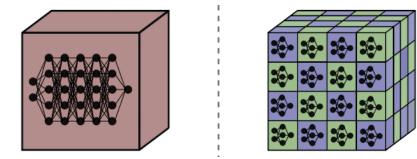


Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (Reiser et al., 2021)

Cropping can be achieved by removing specific INRs



## **Downsides to the Straightforward Approach**

#### Compact local INRs lack global context

Can result in artifacts, especially noticeable along edges

In KiloNeRF, solved using knowledge distillation

- \ By sampling novel viewpoints
- $\setminus$  Requires training a full INR



(a) Without Distillation

(b) With Distillation

Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (Reiser et al., 2021)

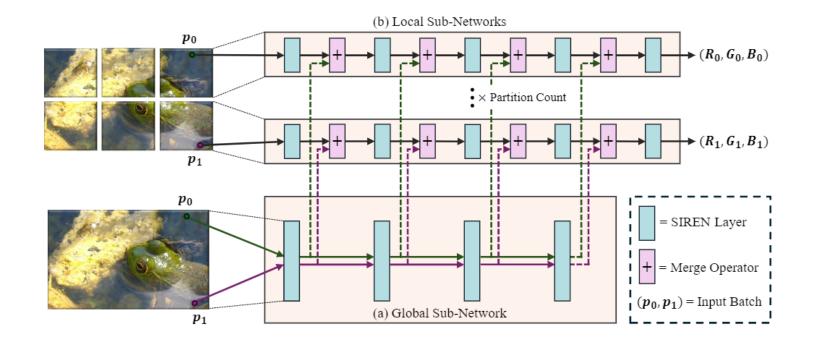
## Our Approach

A novel INR architecture, termed Local-Global INRs

Based on combining both local and global context learning

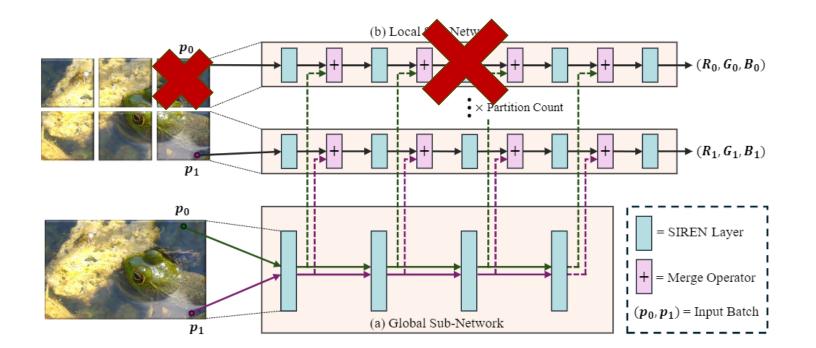
- \ A local sub-network for each partition
- A global sub-network for the entire signal, used to augment the local features with global information
- The Local-Global architecture can be applied to most baseline MLP-based INRs
  - \ We focus on **SIREN** for its popularity
  - \ Additionally, we explore **INCODE**, a SOTA INR

### **Local-Global Architecture**



 $\operatorname{Merge}(\mathbf{L},\mathbf{G}) = \sigma(\operatorname{concat}([\mathbf{L},\mathbf{G}]) \cdot \mathbf{W} + \mathbf{b})$ 

### **Cropping a Local-Global INR**



Global sub-network parameters (+ merge operator) should encompass a small part of the overall architecture

\ 5-15% is sufficient to achieve good quality reconstruction

### **Cropping a Local-Global INR**

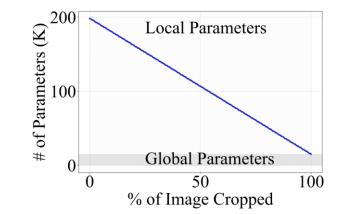
#### Images



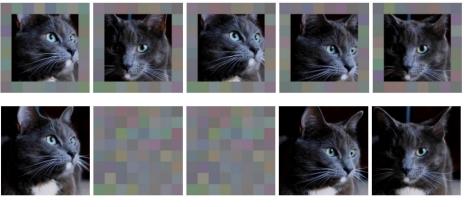


199K Parameters 80K Pa

80K Parameters 47.7K Parameters



Videos



 $\rightarrow t$ 

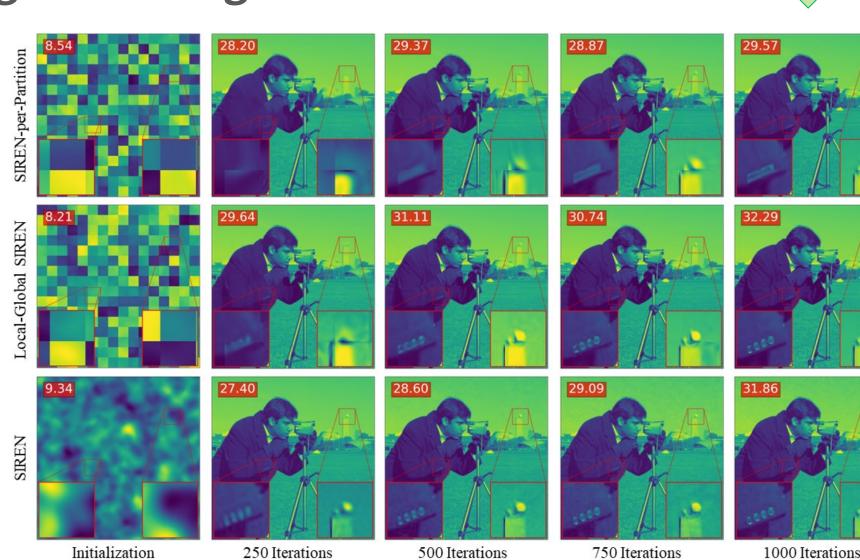
### **Faster and Better Convergence**

Local-Global INRs easily surpass an INR-per-Partition approach in terms of encoding quality

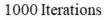
And even improve upon the baseline INR itself

Due to the local-subnetworks, Local-Global INRs achieve faster training/inference

### **Image Encoding**



750 Iterations



## Image Encoding

Quantitative results on a DIV2K subset

| Method                                     | Partition<br>Factors | SSIM ↑ | PSNR (dB) ↑                  |
|--------------------------------------------|----------------------|--------|------------------------------|
| SIREN-per-Partition<br>SIREN-per-Partition | • • •                |        | 31.73 ± 0.63<br>31.90 ± 0.64 |
| Local-Global SIREN                         | (16, 16)             |        | 33.94 ± 0.64                 |
| Local-Global SIREN                         | Auto                 | 0.971  | 34.13 ± 0.59                 |
| SIREN                                      | -                    | 0.966  | 33.57 ± 0.65                 |

Table 1. Mean encoding results on 25 DIV2K images using five random seeds per image. Automatic partitioning uses partition factors  $11 \le C_i \le 16$  to ensure  $32 \times 32$  pixel partitions.

## **Video Encoding**

A 12 second RGB cat video  $(512 \times 512, 300 \text{ frames})$ 

Using partition factors  $C_0 = 5$ ,  $C_1 = 8$ ,  $C_2 = 8$ 

Sub-sampling a part of the pixels in each training iteration

Our method requires less memory, allowing us to increase the number of sampled pixels

Table 2: Mean video encoding results, using 10 random seeds. (\*) next to method stands for sampling  $2 \cdot 10^{-2}\%$  of pixels in each iteration. SPP, LGS stand for SIREN-per-Parition and Local-Global SIREN, respectively.

| Method         | SSIM ↑ | PSNR (dB) ↑      |
|----------------|--------|------------------|
| SPP            | 0.826  | $29.58 \pm 0.02$ |
| LGS (ours)     | 0.854  | $30.28 \pm 0.05$ |
| SIREN          | 0.815  | $29.71 \pm 0.09$ |
| SPP (*)        | 0.854  | $30.83 \pm 0.01$ |
| LGS (*) (ours) | 0.888  | $31.91 \pm 0.02$ |







Figure 6: Three frames of an encoded video. PSNR is at the top left of each frame.

## **Audio Encoding**

Using partition factor  $C_0 = 32$ 

| Audio Clip       | Method                    | $C_0$ | <b>MSE</b> ( $\cdot 10^{-5}$ ) $\downarrow$ | PSNR (dB) $\uparrow$ |  |
|------------------|---------------------------|-------|---------------------------------------------|----------------------|--|
|                  | SIREN-per-Partition       | 32    | 12                                          | $39.26 \pm 0.30$     |  |
| <b>Bach</b> (7s) | Local-Global SIREN (ours) | 32    | 3                                           | $45.18 \pm 0.99$     |  |
|                  | SIREN                     | -     | 10                                          | $39.94 \pm 0.75$     |  |
|                  | SIREN-per-Partition       | 32    | 75                                          | $31.24 \pm 0.19$     |  |
| Counting (12s)   | Local-Global SIREN (ours) | 32    | 48                                          | $33.18 \pm 0.34$     |  |
|                  | SIREN                     | -     | 62                                          | $32.07 \pm 0.32$     |  |

| Table 11: Audio encoding | results after | 1k training iterations. | Averaged on 10 seeds. |
|--------------------------|---------------|-------------------------|-----------------------|
|                          |               | 0                       | 0                     |

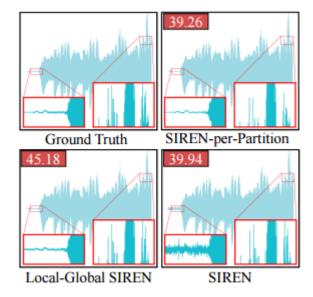
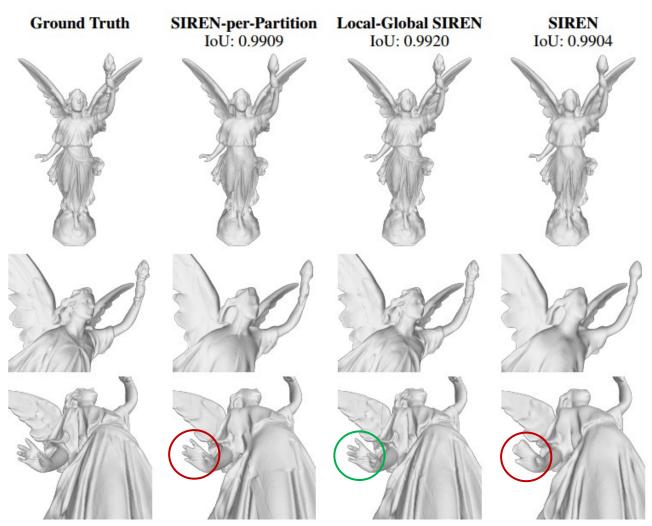


Figure 5: Encoded *Bach* audio clips. Mean PSNR values using 10 random seeds are on the top left of each figure.

## **3D Shape Encoding**

A voxel grid of size  $512 \times 512 \times 512$ 

Vising partition factors  $C_0 = 5$ ,  $C_1 = 8$ ,  $C_2 = 8$ 



### **Partitioning Effects**



| Signal                   | Model                        | Partition<br>Factors | $\mathbf{MSE} \downarrow \\ \mathbf{(\cdot 10^{-4})}$ | SSIM ↑ | PSNR (dB) ↑      | Train↓<br>Time (s) |
|--------------------------|------------------------------|----------------------|-------------------------------------------------------|--------|------------------|--------------------|
| Image                    | Local-Global<br>SIREN (ours) | (2, 2)               | 11.2                                                  | 0.946  | $32.59 \pm 0.52$ | 74                 |
|                          |                              | (4, 4)               | 12.0                                                  | 0.946  | $32.10 \pm 0.47$ | 40                 |
|                          |                              | (8, 8)               | 13.5                                                  | 0.942  | $32.29 \pm 0.42$ | 26                 |
|                          |                              | (16, 16)             | 15.3                                                  | 0.934  | $32.00 \pm 0.39$ | 22                 |
|                          |                              | (32, 32)             | 19.0                                                  | 0.917  | $31.51 \pm 0.28$ | 15                 |
|                          | SIREN                        | -                    | 18.4                                                  | 0.914  | $31.17 \pm 0.68$ | 34                 |
| Video<br>300 × 512 × 512 | Local-Global<br>SIREN (ours) | (5, 4, 4)            | 32.8                                                  | 0.862  | $30.95 \pm 0.07$ | 386                |
|                          |                              | (5, 8, 8)            | 34.7                                                  | 0.854  | $30.28 \pm 0.05$ | 284                |
|                          |                              | (5, 16, 16)          | 41.8                                                  | 0.834  | $29.52 \pm 0.03$ | 244                |
|                          | SIREN                        | -                    | 43.4                                                  | 0.815  | $29.71 \pm 0.09$ | 2354               |

## Local-Global INCODE

INCODE is a SOTA INR, which demonstrated improved performance on various downstream tasks

- We apply our method to INCODE, resulting in a Local-Global INCODE
- We recreate three downstream tasks for the original paper, and show how Local-Global INCODE improved downstream performance

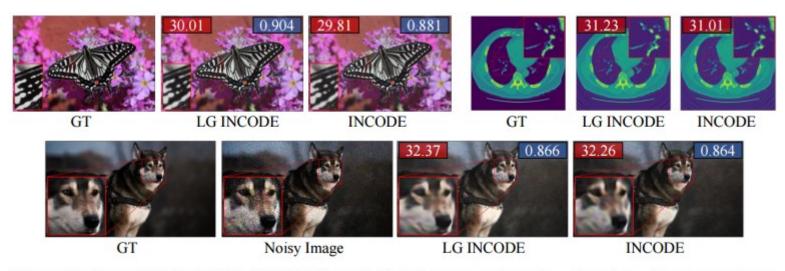


Figure 8: Local-Global (LG) INCODE applied to downstream tasks. Top-left: 4x image superresolution, top-right: CT reconstruction, bottom: image denoising. Mean PSNR and SSIM values across 10 seeds are displayed in the top-left and top-right corners of each frame, respectively.





#### Local-Global INRs seamlessly support cropping with a proportional weight decrease

- \ No retraining needed
- \ Eliminating the need for a pretraining step as in other methods
- Superior encoding quality and training speeds
  - \ Adjustable partitioning allows for a balance between latency and accuracy

More experiments in the paper, including extending a previously encoded signal by adding novel local subnetworks

# Thank You



Ben-Gurion University of the Negev