

Towards Croppable Implicit Neural Representations

Maor Ashkenazi, Eran Treister

Department of Computer Science, Ben-Gurion University of the Negev

Introduction

Implicit Neural Representations (INRs) have gained popularity due to their ability to encode natural signals in neural networks weights

By modeling the signal as a prediction task from some coordinate system to the signal values

A popular choice for the network is a fully connected network (MLP)

INRs have many advantages over discrete representations, and allow for interesting applications

However, their black-box nature presents disadvantages

\ We focus on the basic signal editing operation of **cropping**

\ We wish to **remove parts of the encoded signal, with a proportional decrease of INR weights**

- \ Without retraining/finetuning
- Without compromising on encoding quality

Partitioning the Signal

We begin by dividing the input signal space

 \setminus Each dimension is split into C_i equally sized partitions, resulting in $\prod_{i=1}^n C_i$ partitions

Separate weights will be dedicated for each partition

\ The granularity of partitioning will determine the detail of which we crop the INR

A Straightforward Approach

Assigning separate weights to different partitions by training a compact INR-per-partition

- Was done by KiloNeRF and related methods
	- Allowed for significant speed benefit, both in terms of training and inference

Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (Reiser et al., 2021)

A Straightforward Approach

Assigning separate weights by training a compact INR-per-partition

- Was done by KiloNeRF and related methods
	- Allowed for significant speed benefit, both in terms of training and inference

Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (Reiser et al., 2021)

\ Cropping can be achieved by removing specific INRs

Downsides to the Straightforward Approach

\ Compact local INRs **lack global context**

\ Can result in artifacts, especially noticeable along edges

In KiloNeRF, solved using knowledge distillation

- By sampling novel viewpoints
- \ **Requires training a full INR**

(a) Without Distillation

(b) With Distillation

Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (Reiser et al., 2021)

Our Approach

\ A novel INR architecture, termed **Local-Global INRs**

\ Based on combining both **local and global context learning**

- \ A local sub-network for each partition
- Λ A global sub-network for the entire signal, used to augment the local features with global information
- \ The Local-Global architecture can be applied to most baseline MLP-based INRs
	- \ We focus on **SIREN** for its popularity
	- \ Additionally, we explore **INCODE**, a SOTA INR

Local-Global Architecture

 $Merge(L, G) = \sigma(concat([L, G]) \cdot W + b)$

Cropping a Local-Global INR

Global sub-network parameters (+ merge operator) should encompass a small part of the overall architecture

5-15% is sufficient to achieve good quality reconstruction

Cropping a Local-Global INR

\ Images

Videos

Faster and Better Convergence

\ Local-Global INRs easily surpass an INR-per-Partition approach in terms of encoding quality

\ **And even improve upon the baseline INR itself**

\ Due to the local-subnetworks, **Local-Global INRs achieve faster training/inference**

Image Encoding

1000 Iterations

Image Encoding

\ Quantitative results on a DIV2K subset

Table 1. Mean encoding results on 25 DIV2K images using five random seeds per image. Automatic partitioning uses partition factors $11 \le C_i \le 16$ to ensure 32×32 pixel partitions.

Video Encoding

A 12 second RGB cat video (512 \times 512, 300 frames)

Using partition factors $C_0 = 5, C_1 = 8, C_2 = 8$

Sub-sampling a part of the pixels in each training iteration

\ Our method requires less memory, allowing us to increase the number of sampled pixels

Table 2: Mean video encoding results, using 10 random seeds. (*) next to method stands for sampling $2 \cdot 10^{-2}\%$ of pixels in each iteration. SPP, LGS stand for SIREN-per-Parition and Local-Global SIREN, respectively.

Figure 6: Three frames of an encoded video. PSNR is at the top left of each frame.

Audio Encoding

Using partition factor $C_0 = 32$

Table 11: Audio encoding results after 1k training iterations. Averaged on 10 seeds.

Figure 5: Encoded Bach audio clips. Mean PSNR values using 10 random seeds are on the top left of each figure.

3D Shape Encoding

A voxel grid of size $512 \times 512 \times 512$

Using partition factors $C_0 = 5, C_1 = 8, C_2 = 8$

Partitioning Effects

Local-Global INCODE

INCODE is a SOTA INR, which demonstrated improved performance on various downstream tasks

- We apply our method to INCODE, resulting in a Local-Global INCODE
- \ We recreate three downstream tasks for the original paper, and show how **Local-Global INCODE improved downstream performance**

Figure 8: Local-Global (LG) INCODE applied to downstream tasks. Top-left: 4x image superresolution, top-right: CT reconstruction, bottom: image denoising. Mean PSNR and SSIM values across 10 seeds are displayed in the top-left and top-right corners of each frame, respectively.

\ **Local-Global INRs seamlessly support cropping with a proportional weight decrease**

- \ No retraining needed
- \ Eliminating the need for a pretraining step as in other methods
- Superior encoding quality and training speeds
	- \ Adjustable partitioning allows for a balance between latency and accuracy

More experiments in the paper, including extending a previously encoded signal by adding novel local subnetworks

Thank You

Ben-Gurion University
of the Negev