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Introduction
\ Implicit Neural Representations (INRs) have gained popularity due to their ability to encode natural 

signals in neural networks weights

\ By modeling the signal as a prediction task from some coordinate system to the signal values

\ A popular choice for the network is a fully connected network (MLP)

Image from “Adversarial Generation of Continuous Images“ (Skorokhodov et al., 2020)



Motivation

Training complexity
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Scales gracefully 
compared to grid 
representations

\ INRs have many advantages over discrete representations, and allow for interesting applications

\ However, their black-box nature presents disadvantages



Goal
\ We focus on the basic signal editing operation of cropping

\ We wish to remove parts of the encoded signal, with a proportional decrease of INR weights

\ Without retraining/finetuning

\ Without compromising on encoding quality



Partitioning the Signal
\ We begin by dividing the input signal space

\ Each dimension is split into 𝐶𝑖  equally sized partitions, resulting in ς𝑖=1
𝑛 𝐶𝑖  partitions

\ Separate weights will be dedicated for each partition

\ The granularity of partitioning will determine the detail of which we crop the INR



A Straightforward Approach
\ Assigning separate weights to different partitions by training a compact INR-per-partition

\ Was done by KiloNeRF and related methods

\ Allowed for significant speed benefit, both in terms of training and inference
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Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (Reiser et al., 2021)



A Straightforward Approach
\ Assigning separate weights by training a compact INR-per-partition

\ Was done by KiloNeRF and related methods

\ Allowed for significant speed benefit, both in terms of training and inference

\ Cropping can be achieved by removing specific INRs
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Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs (Reiser et al., 2021)



Downsides to the Straightforward Approach
\ Compact local INRs lack global context

\ Can result in artifacts, especially noticeable along edges

\ In KiloNeRF, solved using knowledge distillation

\ By sampling novel viewpoints

\ Requires training a full INR
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Image from: KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny 
MLPs (Reiser et al., 2021)



Our Approach
\ A novel INR architecture, termed Local-Global INRs

\ Based on combining both local and global context learning

\ A local sub-network for each partition 

\ A global sub-network for the entire signal, used to augment the local features with global information

\ The Local-Global architecture can be applied to most baseline MLP-based INRs

\ We focus on SIREN for its popularity

\ Additionally, we explore INCODE, a SOTA INR
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Local-Global Architecture
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\ Global sub-network parameters (+ merge operator) should encompass a small part of the overall architecture

\ 5-15% is sufficient to achieve good quality reconstruction

Cropping a Local-Global INR
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Cropping a Local-Global INR
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Faster and Better Convergence
\ Local-Global INRs easily surpass an INR-per-Partition approach in terms of encoding quality

\ And even improve upon the baseline INR itself

\ Due to the local-subnetworks, Local-Global INRs achieve faster training/inference
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Image Encoding
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Image Encoding
\ Quantitative results on a DIV2K subset
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Video Encoding
\ A 12 second RGB cat video (512 × 512, 300 frames)

\ Using partition factors 𝐶0 = 5, 𝐶1 = 8, 𝐶2 = 8

\ Sub-sampling a part of the pixels in each training iteration

\ Our method requires less memory, allowing us to increase the number of sampled pixels
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Audio Encoding
\ Using partition factor 𝐶0 = 32
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3D Shape Encoding
\ A voxel grid of size 512 × 512 × 512

\ Using partition factors 𝐶0 = 5, 𝐶1 = 8, 𝐶2 = 8
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Partitioning Effects
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Local-Global INCODE
\ INCODE is a SOTA INR, which demonstrated improved performance on various downstream tasks

\ We apply our method to INCODE, resulting in a Local-Global INCODE

\ We recreate three downstream tasks for the original paper, and show how Local-Global INCODE improved 
downstream performance
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Conclusions
\ Local-Global INRs seamlessly support cropping with a proportional weight decrease

\ No retraining needed

\ Eliminating the need for a pretraining step as in other methods

\ Superior encoding quality and training speeds

\ Adjustable partitioning allows for a balance between latency and accuracy

\ More experiments in the paper,  including extending a previously encoded signal by adding novel local sub-
networks
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