RFLPA: A Robust Federated Learning Framework against Poisoning Attacks with Secure Aggregation

Peihua Mai, Ran Yan, Yan Pang

Research Background

- Contradiction between privacy and robustness
 - SecAgg allows the server to obtain the sum of gradients without inspecting individual user updates
 - Most defense strategies against poisoning attack require the server to access individual local updates to detect the attackers

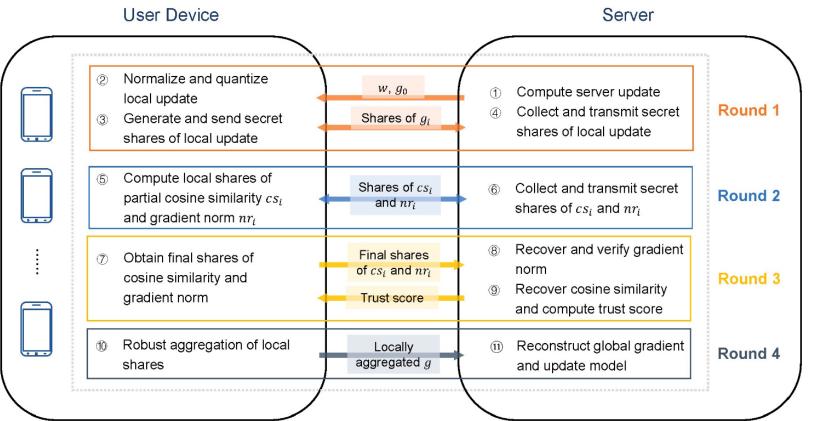
Contributions

- ✓ We propose a federated learning framework that overcomes privacy and robustness issues with reduced communication cost, especially for high-dimensional models.
- ✓ To protect the privacy of local gradients, we propose a novel dot product aggregation protocol.
- ✓ Our framework guarantees the secrecy and integrity of secret shares for a server-mediated network model using encryption and signature techniques.

Design Goals

• Privacy

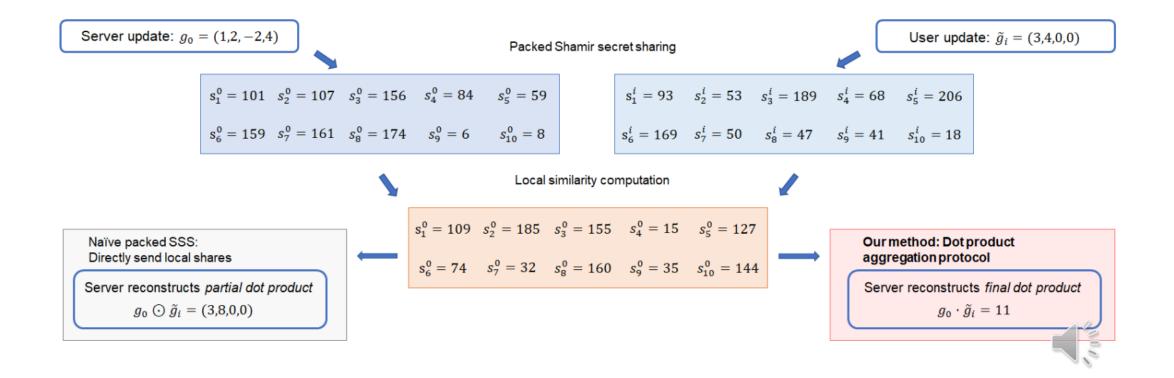
- \checkmark The server learns only the aggregation weights and global gradients.
- ✓ Leverage secret sharing-based protocol to ensure security.


Robustness

- ✓ The model accuracy should be robust against model poisonous attack
- ✓ Compute the similarity between client update and server update

• Efficiency

- ✓ Our framework should maintain computation and communication efficiency even if it is operated on high dimensional vectors
- Employ Packed Shamir Secret Sharing to represent multiple secrets by a single polynomial



- Secret shares the local gradients with verifiable Packed Shamir Secret Sharing
- Compute the cosine similarity between local updates and server updates
- Aggregate the local updates using the cosine similarity

Aggregation rule
$$TS_i = \max\left(0, \frac{\langle \mathbf{g}_i, \mathbf{g}_0 \rangle}{\|\mathbf{g}_i\| \|\mathbf{g}_0\|}\right) = \max\left(0, \frac{\langle \bar{\mathbf{g}}_i, \mathbf{g}_0 \rangle}{\|\mathbf{g}_0\|^2}\right)$$
 $\mathbf{g} = \frac{1}{\sum_{i=1}^N TS_i} \sum_{i=1}^N TS_i \cdot \bar{\mathbf{g}}_i$

Dot Product Aggregation Protocol

- Directly applying packed secret sharing may increase the risk of information leakage when calculating cosine similarity and gradient norm.
- Our proposed protocol ensures that only the single value of dot product is released to the server.

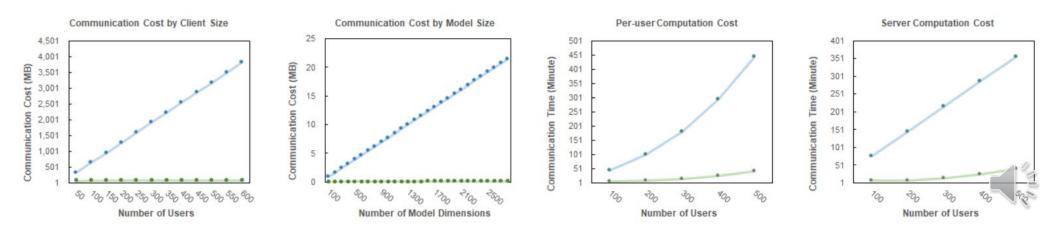
Comparison with Existing Frameworks

	Robustness against malicious users	Privacy Protection against server	Collusion threshold during model training	MPC techniques	
FedAvg	Yes	No	/	/	
Bulyan	Yes	No	/	/	
Trim-mean	Yes	No	/	/	
KRUM	Yes	No	/	/	
Central DP	Yes	No	/	/	
Local DP	Not effective	Yes	/	/	
RFA	No	Yes	/	/	
PEFL	Yes	Yes	1	HE (Paillier)	
PBFL	Yes	Yes	1	HE (CKKS)	
ShieldFL	Yes	Yes	1	HE (Paillier)	
SecureFL	Yes	Yes	1	MPC & HE (BFV)	
RoFL	Yes	Yes	O(N)	ZKP	
ELSA	Yes	Yes	1	MPC	
BREA	Yes	Yes	O(N)	Secret sharing	
RFLPA	Yes	Yes	O(N)	Secret sharing	

Compared with existing methods that achieve the robust and privacy goals, RFLPA:

- Get rid of the assumption of **two non-colluding parties**;
- Mitigate the heavy computation overhead caused by HE and ZKP methods.

N II N


Efficiency Analysis

- Communication complexity of our protocol reduces from O(MN + N) to O(M + N).
- The server-side computation overhead is reduced to $O((M + N)\log^2 N \log \log N)$.

	RFLPA		BERA		
	Computation	Communication	Computation	Communication	
Server User	$O((M+N)\log^2 N \log \log N)$ $O((M+N^2)\log^2 N)$	$O((M+N)N) \\ O((M+N))$	$O((N^{2} + MN) \log^{2} N \log \log N)$ $O(MN \log^{2} N + MN^{2})$	$O(MN + N^2)$ $O(MN + N)$	

• Our framework reduces the communication and computation cost by over 75% compared with BREA.

• RFLPA demonstrates more stable performance for up to 30% adversaries compared to other baselines.

	Gradient Manipulation				Label Flipping				
Proportion	of Attackers	No	10%	20%	30%	No	10%	20%	30%
FedAvg	MNIST	0.98 ± 0.0	0.46 ± 0.1	0.40 ± 0.1	0.32 ± 0.0	0.98 ± 0.0	$\boldsymbol{0.96 \pm 0.0}$	0.92 ± 0.0	0.82 ± 0.0
	F-MNIST	0.88 ± 0.0	0.55 ± 0.0	0.51 ± 0.0	0.45 ± 0.1	0.88 ± 0.0	0.82 ± 0.0	$0.73\pm\!0.0$	0.69 ± 0.0
	CIFAR-10	0.76 ± 0.3	0.14 ± 0.2	0.13 ± 0.8	0.13 ± 0.2	0.76 ± 0.3	0.72 ± 1.1	0.68 ± 2.7	0.59 ± 0.8
Bulyan	MNIST	0.98 ± 0.0	0.92 ± 0.0	0.89 ± 0.0	0.87 ± 0.0	0.98 ± 0.0	0.91 ± 0.0	0.90 ± 0.0	0.87 ± 0.0
	F-MNIST	0.86 ± 0.0	$0.73\pm\!0.0$	0.71 ± 0.1	0.69 ± 0.0	0.86 ± 0.0	0.76 ± 0.0	0.70 ± 0.1	0.68 ± 0.0
	CIFAR-10	0.77 ± 1.0	$0.73\pm\!0.8$	0.45 ± 1.2	0.27 ± 0.6	0.77 ± 1.0	0.72 ± 0.2	0.62 ± 1.8	0.40 ± 0.9
Trim- mean	MNIST	0.98 ± 0.0	0.95 ± 0.0	0.93 ± 0.0	0.91 ± 0.0	0.98 ± 0.0	0.95 ± 0.0	0.92 ± 0.0	0.90 ± 0.0
	F-MNIST	0.86 ± 0.0	0.81 ± 0.0	$0.74\pm\!0.0$	$0.71\pm\!0.0$	0.86 ± 0.0	$0.78\pm\!0.0$	$0.74\pm\!0.0$	$0.73\pm\!0.0$
mean	CIFAR-10	0.76 ± 1.0	0.57 ± 2.1	0.51 ± 1.1	0.47 ± 2.2	0.76 ± 1.0	0.71 ± 1.3	0.68 ± 0.7	0.56 ± 1.1
LDP	MNIST	0.87 ± 0.1	0.13 ± 0.0	0.10 ± 0.0	0.10 ± 0.0	0.87 ± 0.1	0.87 ± 0.3	0.83 ± 1.2	0.77 ± 2.1
	F-MNIST	0.74 ± 0.1	0.59 ± 0.4	$0.53\pm\!1.2$	0.12 ± 0.0	0.74 ± 0.1	0.63 ± 0.5	0.62 ± 0.2	0.59 ± 1.2
	CIFAR-10	0.14 ± 0.2	0.14 ± 0.2	0.12 ± 0.3	0.12 ± 0.1	0.14 ± 0.2	0.14 ± 0.2	0.14 ± 0.3	0.13 ± 0.1
CDP	MNIST	0.96 ± 0.0	0.96 ± 0.0	0.95 ± 0.0	$0.94\pm\!0.0$	0.96 ± 0.0	0.96 ± 0.0	0.95 ± 0.3	0.91 ± 0.2
	F-MNIST	0.83 ± 0.1	0.51 ± 0.1	0.41 ± 0.0	0.34 ± 0.1	0.83 ± 0.1	0.81 ± 0.5	0.79 ± 0.0	0.78 ± 0.7
	CIFAR-10	0.71 ± 1.2	0.12 ± 0.5	0.12 ± 0.3	0.12 ± 0.3	0.71 ± 1.2	0.68 ± 0.7	0.66 ± 1.5	0.63 ± 1.3
BREA	MNIST	0.94 ± 0.0	0.93 ± 0.0	0.93 ± 0.0	$0.93\pm\!0.0$	0.94 ± 0.0	0.94 ± 0.0	0.93 ± 0.0	0.93 ± 0.0
	F-MNIST	$0.84\pm\!0.0$	0.83 ± 0.0	0.82 ± 0.0	0.81 ± 0.0	0.84 ± 0.0	0.84 ± 0.0	0.82 ± 0.0	0.81 ± 0.0
	CIFAR-10	0.70 ± 1.0	0.69 ± 1.1	0.68 ± 1.9	0.68 ± 0.7	0.70 ± 1.0	0.70 ± 2.2	0.67 ± 0.9	0.65 ± 2.7
RFLPA	MNIST	0.96 ± 0.0	0.96 ± 0.0	0.95 ± 0.0	0.95 ± 0.0	0.96 ± 0.0	0.96 ± 0.0	0.95 ± 0.0	0.95 ± 0.0
	F-MNIST	0.84 ± 0.0	0.84 ± 0.0	0.83 ± 0.0	0.82 ± 0.0	0.84 ± 0.0	0.83 ± 0.0	0.83 ± 0.0	0.82 ± 0.0
	CIFAR-10	0.74 ± 2.3	0.70 ± 1.8	0.70 ± 1.9	0.69 ± 1.8	0.74 ± 2.3	0.71 ± 1.7	0.70 ± 1.6	0.69 ± 0.8