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Settings

(xi, yi) ∈ Sd × R, i ∈ [n] are i.i.d. samples yi = f⋆(xi) + ϵi E[ϵi | xi] ≤ σ2

Large dimensional framework: n ≍ dγ

The goal is to find an estimator f̂ with small loss:

E :=
∥∥∥̂f − f⋆

∥∥∥2

L2
.

Inner product kernel function: K : Sd × Sd → R, K(x, x′) = Φ(⟨x, x′⟩)
Assume f⋆ ∈ [H]s, s > 0, where H is the Reproducing Kernel Hilbert Space (RKHS)
induced by K.

Note.
Mercer Decomposition: K(x, x′) =

∑
i λiei(x)ei(x′)

{λi} are the eigenvalues in descending order, and {ei(·)} are the eigenfunctions

H =
{∑

i aiλ
1/2
i ei : (ai)i ∈ ℓ2

}
, norm ∥

∑
i aiλ

1/2
i ei∥2

H :=
∑

i a2
i

[H]s =
{∑

i aiλ
s/2
i ei : (ai)i ∈ ℓ2

}
, norm ∥

∑
i aiλ

s/2
i ei∥2

[H]s :=
∑

i a2
i
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Analytic Filtering Functions and Spectral Algorithms

Definitions Review
φλ(·): an analytic filter function of order τ ≥ 1

Let Kx : R → H be defined by Kx(y) = y · K(x, ·)

Define Tx = KxK∗
x and TX = 1

n
∑n

i=1 Txi

Define ĝZ = 1
n
∑n

i=1 yi · K(xi, ·)

The estimator for the analytic spectral algorithm is defined as

f̂λ = φλ(TX)ĝZ. (1)

Summary:
Analytic filtering function of order τ → Analytic spectral algorithm of order τ
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Spectral Algorithms with Different τ

Example 1 (Kernel Gradient Flow)

φGF
λ (z) = 1 − e−λ−1z

z , τ = ∞.

Example 2 (Kernel Ridge Regression)

φKRR
λ (z) = 1

z + λ
, τ = 1.

Example 3 (Iterated Ridge Regression, q = 1, 2, · · · )

φIT,q
λ (z) = 1

z

[
1 − λq

(z + λ)q

]
, τ = q.
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Assume there exists a constant β > 1 such that the eigenvalues satisfy λj ≍ j−β .

Review of Saturation Effects in Fixed Dimensions
Minimax rate: n−sβ/(sβ+1)

Optimal convergence rate of algorithms:
Kernel Gradient Flow (τ = ∞): n−sβ/(sβ+1)

Kernel Ridge Regression (τ = 1): s ≤ 2, n−sβ/(sβ+1); s > 2, n−2β/(2β+1)

Analytic spectral algorithm of order τ :
s ≤ 2τ , n−sβ/(sβ+1); s > 2τ , n−2τβ/(2τβ+1)

When s > 2, Kernel Ridge Regression performs worse than certain spectral algorithms
(e.g., Kernel Gradient Flow).
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Inspired by the uniform convergence concepts of neural networks and Kernel Gradient
Flow, large-dimensional spectral algorithms have garnered renewed attention.

Previous research mainly focuses on Kernel Ridge Regression (KRR).

If large-dimensional KRR exhibits saturation effects, then KRR underperforms compared
to Kernel Gradient Flow.
Hence, the above results cannot be directly extended to large-dimensional neural
networks.

Motivations: Does the saturation effect exist in large dimensions?
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Main Result

When d is sufficiently large:

Analytic Spectral Algorithm with τ ≥ s
Suppose one of the following conditions holds:

(i) τ = ∞, (ii) s > 1/(2τ), (iii) γ > ((2τ + 1)s)/(2τ(1 + s));

Then there exists a penalty coefficient λ⋆ > 0 such that

E(E (̂fλ⋆) | X) = Θd,P

(
d−min{γ−p,s(p+1)}

)
· poly (ln(d)) .

Analytic Spectral Algorithm with τ < s

E(E (̂fλ⋆) | X) = Θd,P

(
d−min

{
γ−p, τ(γ−p+1)+ps̃

τ+1 ,̃s(p+1)
})

· poly (ln(d)) ,

where s̃ = min{s, 2τ}.

Minimax Lower Bound

inf
f̂

sup
f⋆∈Rγ [B]s

E(X,Y)∼ρ⊗n [E] = Ωd

(
d−min{γ−p,s(p+1)}

)/
poly (ln(d)) .
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Numerical Experiment I: Convergence Rate of Kernel Gradient Flow and
KRR Loss when s = 1
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Numerical Experiment II: Performance Comparison of KRR and Kernel
Gradient Flow for s = 1.9 > 1
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Figure: Comparison of KRR and Kernel Gradient Flow loss. The penalty coefficients for both
algorithms are set as λ = cdθ, with θ chosen as the theoretically optimal value.
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