On the Saturation Effects of Spectral Algorithms in Large Dimensions

Weihao Lu, Haobo Zhang, Yicheng Li, Qian Lin

Tsinghua University

November 11, 2024

 \leftarrow \Box \rightarrow \leftarrow \rightarrow Weihao (Tsinghua University) On the Saturation Effects of Spectral Algorithms in Large Dimensions November 11, 2024 1/9

Settings

 $(x_i, y_i) \in \mathbb{S}^d \times \mathbb{R}, i \in [n]$ are i.i.d. samples $y_i = f_*(x_i) + \epsilon_i$ $\mathbb{E}[\epsilon_i | x_i] \leq \sigma^2$ **Large dimensional framework:** $n \times d^{\gamma}$

The goal is to find an estimator \widehat{f} with small loss:

$$
\mathcal{E}:=\left\|\widehat{f}-f_{\star}\right\|_{L^2}^2.
$$

 I nner product kernel function: $K : \mathbb{S}^d \times \mathbb{S}^d \to \mathbb{R}$, $K(x, x') = \Phi(\langle x, x' \rangle)$

Assume $f_* \in [\mathcal{H}]^s$, $s > 0$, where \mathcal{H} is the Reproducing Kernel Hilbert Space (RKHS) induced by *K*.

Settings

 $(x_i, y_i) \in \mathbb{S}^d \times \mathbb{R}, i \in [n]$ are i.i.d. samples $y_i = f_*(x_i) + \epsilon_i$ $\mathbb{E}[\epsilon_i | x_i] \leq \sigma^2$ **Large dimensional framework:** $n \times d^{\gamma}$

The goal is to find an estimator \hat{f} with small loss:

$$
\mathcal{E}:=\left\|\widehat{f}-f_{\star}\right\|_{L^2}^2.
$$

 I nner product kernel function: $K : \mathbb{S}^d \times \mathbb{S}^d \to \mathbb{R}$, $K(x, x') = \Phi(\langle x, x' \rangle)$

Assume $f_* \in [\mathcal{H}]^s$, $s > 0$, where \mathcal{H} is the Reproducing Kernel Hilbert Space (RKHS) induced by *K*.

Note.

- Mercer Decomposition: $K(x, x') = \sum_i \lambda_i e_i(x) e_i(x')$
- $\{\lambda_i\}$ are the eigenvalues in descending order, and $\{e_i(\cdot)\}$ are the eigenfunctions

$$
\bullet \ \mathcal{H} = \left\{ \sum_i a_i \lambda_i^{1/2} e_i : (a_i)_i \in \ell_2 \right\}, \ \text{norm} \ \|\sum_i a_i \lambda_i^{1/2} e_i \|_{\mathcal{H}}^2 := \sum_i a_i^2
$$

$$
\bullet \ [\mathcal{H}]^s = \left\{ \textstyle \sum_i a_i \lambda_i^{s/2} e_i : (a_i)_i \in \ell_2 \right\}, \text{ norm } || \textstyle \sum_i a_i \lambda_i^{s/2} e_i ||^2_{[\mathcal{H}]^s} := \sum_i a_i^2
$$

 298

イロト イ押 トイヨ トイヨ トー

Definitions Review

- *φλ*(*·*): an analytic filter function of order *τ ≥* 1
- Let $K_x : \mathbb{R} \to \mathcal{H}$ be defined by $K_x(y) = y \cdot K(x, \cdot)$
- Define $T_x = K_x K_x^*$ and $T_x = \frac{1}{n} \sum_{i=1}^n T_{x_i}$
- Define $\hat{g}_Z = \frac{1}{n} \sum_{i=1}^n y_i \cdot K(x_i, \cdot)$
- The estimator for the analytic spectral algorithm is defined as

$$
\hat{f}_{\lambda} = \varphi_{\lambda}(T_X) \hat{g}_Z.
$$
 (1)

Summary:

Analytic filtering function of order *τ →* Analytic spectral algorithm of order *τ*

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$, $\left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Example 1 (Kernel Gradient Flow)

$$
\varphi^{\text{GF}}_{\lambda}(z)=\frac{1-e^{-\lambda^{-1}z}}{z}, \quad \tau=\infty.
$$

Example 2 (Kernel Ridge Regression)

$$
\varphi^{\text{KRR}}_{\lambda}(z)=\frac{1}{z+\lambda}, \quad \tau=1.
$$

Example 3 (Iterated Ridge Regression, $q = 1, 2, \cdots$)

$$
\varphi_\lambda^{\mathrm{IT},q}(z)=\frac{1}{z}\left[1-\frac{\lambda^q}{(z+\lambda)^q}\right],\quad \tau=q.
$$

活

 Ω

イロト イ御 トイミトイ

Assume there exists a constant $\beta > 1$ such that the eigenvalues satisfy $\lambda_j \asymp j^{-\beta}$.

Review of Saturation Effects in Fixed Dimensions

Minimax rate: *n −sβ/*(*sβ*+1)

Optimal convergence rate of algorithms:

- Kernel Gradient Flow $(\tau = \infty)$: $n^{-s\beta/(s\beta+1)}$
- Kernel Ridge Regression ($\tau = 1$): $s \leq 2$, $n^{-s\beta/(s\beta+1)}$; $s > 2$, $n^{-2\beta/(2\beta+1)}$

• Analytic spectral algorithm of order $τ$ **:** $s \leq 2\tau$, $n^{-s\beta/(s\beta+1)}$; $s > 2\tau$, $n^{-2\tau\beta/(2\tau\beta+1)}$

When s > 2*, Kernel Ridge Regression performs worse than certain spectral algorithms (e.g., Kernel Gradient Flow).*

イロト イ押ト イヨト イヨトー

- Inspired by the uniform convergence concepts of neural networks and Kernel Gradient Flow, large-dimensional spectral algorithms have garnered renewed attention.
- **•** Previous research mainly focuses on Kernel Ridge Regression (KRR).

- Inspired by the uniform convergence concepts of neural networks and Kernel Gradient Flow, large-dimensional spectral algorithms have garnered renewed attention.
- **•** Previous research mainly focuses on Kernel Ridge Regression (KRR).

If large-dimensional KRR exhibits saturation effects, then KRR underperforms compared to Kernel Gradient Flow.

Hence, the above results cannot be directly extended to large-dimensional neural networks.

- Inspired by the uniform convergence concepts of neural networks and Kernel Gradient Flow, large-dimensional spectral algorithms have garnered renewed attention.
- Previous research mainly focuses on Kernel Ridge Regression (KRR).

If large-dimensional KRR exhibits saturation effects, then KRR underperforms compared to Kernel Gradient Flow.

Hence, the above results cannot be directly extended to large-dimensional neural networks.

Motivations: Does the saturation effect exist in large dimensions?

Main Result

When *d* is sufficiently large:

Analytic Spectral Algorithm with *τ ≥ s*

Suppose one of the following conditions holds:

(i)
$$
\tau = \infty
$$
, (ii) $s > 1/(2\tau)$, (iii) $\gamma > ((2\tau + 1)s)/(2\tau(1 + s))$;

Then there exists a penalty coefficient $\lambda^* > 0$ such that

$$
\mathbb{E}(\mathcal{E}(\hat{f}_{\lambda^{\star}}) \mid X) = \Theta_{d,\mathbb{P}}\left(d^{-\min\{\gamma-p,\mathsf{s}(p+1)\}}\right) \cdot \mathsf{poly}\left(\mathsf{In}(d)\right).
$$

Analytic Spectral Algorithm with *τ < s*

$$
\mathbb{E}(\mathcal{E}(\hat{f}_{\lambda^\star}) \mid X) = \Theta_{d,\mathbb{P}}\left(d^{-\min\left\{\gamma-p, \frac{\tau(\gamma-p+1)+p\tilde{s}}{\tau+1}, \tilde{s}(p+1)\right\}}\right) \cdot \text{poly}\left(\ln(d)\right),
$$

where $\tilde{s} = \min\{s, 2\tau\}$.

Minimax Lower Bound

$$
\inf_{\hat{f}} \sup_{f_* \in R_{\gamma}[{\cal B}]^s} \mathbb{E}_{(X,Y) \sim \rho^{\otimes n}}[{\cal E}] = \Omega_d \left(d^{-\min\{\gamma-p, s(p+1)\}} \right) \Big/ \operatorname{\text{{\rm poly}}}\left(\ln(d)\right).
$$

Weihao (Tsinghua University) **On the Saturation Effects of Spectral Algorithms in Large Dimensions November 11, 2024** 7/9

Numerical Experiment I: Convergence Rate of Kernel Gradient Flow and KRR Loss when $s = 1$

Weihao (Tsinghua University) **On the Saturation Effects of Spectral Algorithms in Large Dimensions November 11, 2024** 8/9

 2990

活

Numerical Experiment II: Performance Comparison of KRR and Kernel Gradient Flow for $s = 1.9 > 1$

Figure: Comparison of KRR and Kernel Gradient Flow loss. The penalty coefficients for both algorith[m](#page-10-0)s are set as $\lambda = cd^{\theta}$, with θ chosen as the theoretical[ly](#page-10-0) o[pti](#page-11-0)m[al va](#page-11-0)[lue](#page-0-0)[.](#page-11-0)