Solving Sparse & High-Dimensional-Output Regression via Compression

Renyuan Li¹ Zhehui Chen² Guanyi Wang ¹ NeurIPS 2024

National University of Singapore¹ Google²

Motivation

algorithmic trading

RL for high-dim decision

grounding in LLM

• Using linear models \mathcal{G} , i.e., $g(\mathbf{x}) = \mathbf{Z}\mathbf{x}$, for simplicity.

- · Color of the boxes: orange/white nonzero/zero components.
- Height of boxes: dimension of corresponding vector.
- Black arrows: the common approach. Blue arrows: our approach.
- Φy : underlying feature for the output.

Propose an two-stage framework via compression with

- improved computational efficiency
- the same order of generalization bounds before and after compression

Running Time: Time Complexity Comparison for each prediction.

Dataset	Prop.Algo.	OMP	CD	FISTA
Synthetic Data	≈1 second	200-400 seconds	<1 second	<3 seconds
EURLex-4K	<1 second	20-80 seconds	<1 second	pprox 1 second
Wiki10-31K	<5 seconds	500-700 seconds	<5 seconds	5-10 seconds

• Enjoys a better running time for large scale instances

