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Spike Neuron

“Training Spiking Neural Networks Using Lessons From Deep Learning.”
Eshraghian, Jason Kamran et al. 2021
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Information in Spiking Neurons

• Floating-point Numbers

• Binary Value
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Spiking Neural Networks

https://spikingjelly.readthedocs.io/
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SNN version of Transformer

 In Transformer models, positional encoding:

 However, in the SNN version of Transformer (Spikformer), there has not 
been a good mechanism for Positional Encoding (PE).

 Positional encoding neurons in Transformer outputs float numbers.

 The output of SNN neurons is 1 or 0

Positional 
encoding
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Central Pattern Generators

Simple Model

Marder, Eve; Bucher, Dirk (2001-11-27). "Central 
pattern generators and the control of rhythmic 
movements". Current Biology. 11 (23): R986–R996

Central Pattern Generators (CPG) is a group of neurons 
capable of producing rhythmic patterned outputs 
without requiring rhythmic inputs.

These neural circuits are responsible for generating 
the rhythmic signals that control vital activities such 
as locomotion, respiration, and chewing

Yuste, R., MacLean, J., Smith, J. et al. The cortex 
as a central pattern generator. Nat Rev Neurosci
6, 477–483 (2005). https://doi.org/10.1038/nrn1686

Comprehensive model
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Positional Encoding in Transformers

What    can    I   saySequential Data

Positional Encoding

PE of 
the first 
token

What        can             I   say

• Transformer plays a crucial role in the latest AI models (for example, GPT). 
• Positional Encoding (PE) is an important technique within the Transformer architecture.

The encoding for each position in this sequence is 
different, making it easier for the model to process 
their sequential relationships.

We find that the CPGs can be used as a PE for SNNs!
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CPG-PE

CPG Illustration PE in SNNs

Experiment Results

• This also inspires us to consider a new role for CPGs in 
neuroscience—not just as rhythm generators.

• Current SNN version of the Transformer model: 
• (1) Non-uniqueness of Each Position in Spike-form; 
• (2) Non-spike Output

• Our proposed CPG-PE: 
• (1) Both brain-inspired and hardware-friendly 
• (2) Uniqueness of Each Position in Spike-form
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Relationship between PE and CPGs

The general form of CPGs: 

General Solution:

re-parameterize

The PE in Transformers 
is a particular solution 
of the membrane 
potential variations in a 
specific type of CPG.
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Implementations

Simply concatenate with SNN neurons

Illustration of applying CPG-PE to SNNs

We also prove that CPG-PE is 
hardware-friendly because:
• CPG-PE can be integrated into a 

linear layer;
• CPG-PE can be simply 

implemented with 2 LIF neurons.
Refer to Appendix B and C
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Forecasting Tasks

Performance 0.719 -> 0.744 by just adding the 
CPG-PE (marginal computation cost increase)

Experimental results of time-series forecasting on 
4 benchmarks with different prediction lengths.
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Classification Tasks

Text Classification

Image Classification
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Classification Tasks

Sweeping CPG properties

Positional Encoding Analysis

An ideal PE method for SNNs: 
(1) Uniqueness of each position; 
(2) Ability to discern positional information;
(3) Compatibility with neuromorphic hardware;
(4) Formulation in spike-form.

(1) (2) (3) (4)

CPG-PE √ √ √ √

PE in Spikformer × × √ ×

Repetition rate 12.19% 
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THANKS!

Contact us:
czlv24@m.fudan.edu.cn

dongqihan@ microsoft.com
yansenwang@microsoft.com
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