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Background

∎ What is Reinforcement Learning (RL)?
◻ RL is a method where agents learn to make decisions by interacting with an environment

◻ The agent observes a current state, takes an action, and transitions to a new state, receiving a reward

∎ Why is individualization crucial? 
◻ Individualized RL tailors decisions based on unique characteristics, like preferences or physiological 

traits, which affect state transitions

◻ Healthcare
• Individual-specific factors like genetic makeup impact responses to treatment

• Identifying these unique factors can personalize treatment plans, leading to improved health outcomes

◻ Education
• Differences in learning styles (e.g., visual vs. hands-on) affect how students absorb information

• RL can use these insights to recommend tailored learning activities, enhancing educational effectiveness
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Motivation 

∎ Individual-specific factors in RL are often latent and unobserved
◻ Patient’s genetic traits may impact their response to treatment but remain hidden from observation

◻ Challenge to fully understand each individual’s unique influence on state transitions

∎ Identify these latent factors can better optimize personalized policies
◻ RL can tailor educational content to suit each student, improving learning outcomes

◻ Allow RL systems to adapt more effectively to individual needs and improve outcomes

∎ Contributions
◻ Introduction of Individualized Markov Decision Processes 

◻ Theoretical guarantees for identifying individual-specific latent factors

◻ Practical generative method to estimate these factors and optimize policies
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Problem Formulation

∎ Individualized Markov Decision Process (iMDP)
◻ State and Action Spaces: Common across individuals

◻ Individual-specific Factor (𝜅): A latent variable unique to each group that influences state transitions

◻ Group and Individual Uniqueness: Individuals are grouped based on shared latent factors, while each 
individual has unique identifiers

∎ Objective
◻ Identify latent individual-specific factors 𝜅 from observed trajectories

◻ Derive individualized policies for each agent and realize policy adaptation for newcomers
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iMDP for individual 𝑚



Identifiability Theorem

∎ Purpose
◻ Guarantee that latent individual-specific factors 𝜅 can be uniquely identified from observed trajectories

∎ Key Conditions
◻ Finite Latent Factors: Identifiability guaranteed if the latent factor 𝜅 has a finite set of values and 

individuals are grouped accordingly

◻ Infinite Latent Factors: For complex cases with infinite or continuous latent factors, identifiability is 
achieved under rank deficiency within post-nonlinear temporal model
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Methodology

∎ 1st Phase: Latent Factor Estimation
◻ Objective: Identify latent individual-specific factors that impact state transitions 

◻ Process: Encode trajectories into latent representations and quantize using an embedding dictionary

◻ Provides a foundation for personalized policy adaptation by capturing unique, unobserved influences

∎ 2nd Phase: Individualized Policy Learning
◻ Objective: Develop policies tailored to individual characteristics

◻ Process: Initialize policy using latent factors, then adapt through online interaction new individual

◻ Enhances policy effectiveness by aligning decisions with each individual’s unique traits
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Experiment Result: Latent Factor Estimation
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∎ Conclusion
◻ Our method effectively estimates latent factors with strong correlation to true values, supporting 

reliable individualization

∎ Results
◻ Fig (a): Our method achieves higher PCC values over time, outperforming baselines

◻ Fig (b-c): Kernel Canonical Correlation Analysis (KCCA) scatterplots indicate a near-perfect correlation 
between estimated and true latent factors

◻ Fig (d): Larger sample sizes (M) and trajectory lengths (T) improve identifiability



Experiment Result: Policy Learning Improvement
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∎ Conclusion
◻ The proposed method demonstrates superior policy learning, leading to higher rewards and faster 

convergence across tasks

∎ Results
◻ Pendulum: Proposed method achieves the highest rewards and faster convergence across episodes

◻ HeartPole: Consistently outperforms other methods with higher rewards

◻ Half Cheetah: Significant reward improvements and rapid convergence over time

Pendulum HeartPole Half Cheetah



Summary

∎ Our work
◻ New approach for individualized reinforcement learning with theoretical guarantees

◻ Successfully estimates latent factors, supporting personalized policy optimization

∎ Limitations
◻ Does not address instantaneous causal influences within states

◻ Lacks nonparametric proof for continuous latent factors

◻ Does not account for time-varying latent factors
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Thank you for your listening!
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