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Decoders to encoders via contrastive learning

Given a fixed computational budget:
● How large a model should I use?
● How much data do I need?
● Are PEFT methods better than full fine-tuning? What hyperparameters should I choose?



Optimising loss given fine-tuning budget

We choose the Pythia family of pre-trained decoder models and experiment with 
computational budgets from 1.5e15 to 1.5e18 FLOP by varying
● Model parameters
● Amount of data
● Parameter-Efficient Fine-Tuning (PEFT) methods

○ Block freezing
○ LoRA
○ Bias tuning
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The compute-optimal recipe



Conclusion

● We derived scaling laws for training embedding models from decoder-only transformers. 
We found full fine-tuning and LoRA to be the most efficient methods at low and high 
computational budgets.

● Our scaling laws allow us to find the compute-optimal recipe for training embedding 
models, which reveals the optimal model size, data quantity, PEFT method and 
hyperparameters at a wide range of computational budgets.
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