

Robust Conformal Prediction Using Privileged Information

Shai Feldman, Yaniv Romano

Technion – Israel Institute of Technology

Various forms of corruptions

- Noisy labels
- Missing values
- Low-quality data, uncertainty
- Sensor noise
- Failing measuring equipment

1. Dough (ImageNet label)
2. Pizza
3. Soup bowl
4. ...

No 100% accurate data

→ corrupted samples

Uncertainty is inevitable!

Setup

- Input: *n* training points $\{(X_i, Y_i^{obs}, Z_i, M_i)\}_{i=1}^n$ and a test point $(X_{test}, ?)$
 - \rightarrow exchangeable (e.g., i.i.d.) samples from unknown joint dist.
- $X \in \mathcal{X}$: features
- $Y^{obs} \in \mathcal{Y}$: observed label/response
 - $Y \in \mathcal{Y}$: ground truth label
 - $Z \in \mathcal{Z}$: privileged information (PI) available only during training time
 - E.g., The annotator's level of expertise
 - $M \in \{0,1\}$: noise indicator $M = 1 \Leftrightarrow Y^{obs}$ is noisy
 - Assumption: the PI Z explains the corruption appearances $(X, Y) \perp M \mid Z$

* See paper for a more general framework covering missing or noisy features and labels.

Ultimate goal: reliable UQ under corruptions

- Input: *n* training points $\{(X_i, Y_i^{obs}, Z_i, M_i)\}_{i=1}^n$ and a test point $(X_{test}, ?)$
 - → exchangeable (e.g., i.i.d.) samples from unknown joint dist.
- $X_{\text{test}} = X_{n+1} \in \mathcal{X}$: clean test features
- $Y_{\text{test}} = Y_{n+1} \in \mathcal{Y}$: clean, unknown, test response

<u>Wish</u> to use any ML algorithm to construct a marginal **distribution-free prediction set** $\mathbb{P}[Y_{\text{test}} \in \mathcal{C}(X_{\text{test}})] \ge 1 - \alpha \text{ (e.g., 90\%)}$

 $\alpha \in (0,1)$ is a user-specified miscoverage rate

Ultimate goal: reliable UQ under corruptions

- Input: *n* training points $\{(X_i, Y_i^{obs}, Z_i, M_i)\}_{i=1}^n$ and a test point $(X_{test}, ?)$
 - → exchangeable (e.g., i.i.d.) samples from unknown joint dist.
- $X_{\text{test}} = X_{n+1} \in \mathcal{X}$: clean test features
- $Y_{\text{test}} = Y_{n+1} \in \mathcal{Y}$: clean, unknown, test response

<u>Wish</u> to use any ML algorithm to construct a marginal **distribution-free prediction set** $\mathbb{P}[Y_{\text{test}} \in \mathcal{C}(X_{\text{test}})] \ge 1 - \alpha \text{ (e.g., 90\%)}$

 $\alpha \in (0,1)$ is a user-specified miscoverage rate

- Construct $C(X_{test})$ using the *observed* corrupted data
- Guarantee that clean Y_{test} is covered in $C(X_{\text{test}})$

how and under what conditions is it possible?

Background on conformal prediction

Conformal prediction [Vovk et al. '99; Papadopoulos et al. '12, Lei et al. '18; ...]

- Input: pre-trained predictive model \hat{f} , and holdout calibration set $\{(X_i, Y_i)\}_{i=1}^n$
- Process
 - Compute non-conformity scores $s_i = S(X_i, Y_i)$ for all *i*

a measure of goodness-of-fit (the lower the better), e.g., $s_i = |\hat{f}(X_i) - Y_i|$

Conformal prediction [Vovk et al. '99; Papadopoulos et al. '12, Lei et al. '18; ...]

- Input: pre-trained predictive model \hat{f} , and holdout calibration set $\{(X_i, Y_i)\}_{i=1}^n$
- Process
 - Compute non-conformity scores $s_i = S(X_i, Y_i)$ for all *i*
 - Compute* \hat{q}^{clean} = the (1α) -empirical quantile of $\{s_i\}_{i=1}^n$
- Output: prediction set

*missing a small correction term

Conformal prediction is valid under exchangeability

<u>Theorem</u> (Vovk et al. '99; Papadopoulos et al. '12; Lei et al. '18; R., Patterson, Candes '19, ...) If $(X_1, Y_1), ..., (X_n, Y_n)$ and $(X_{\text{test}}, Y_{\text{test}})$ are exch. Then, $\mathbb{P}[Y_{\text{test}} \in C(X_{\text{test}}, \hat{q}^{\text{clean}})] \ge 1 - \alpha$ (e.g., 90%)

+ Exchangeability is the only assumption

- Assumes that the training data is clean

Weighted conformal prediction [Tibshirani et al. '19]

• We consider only the scores of non-corrupted samples and **weight** their distribution by the ratio of likelihoods between the test and train data:

$$w(z) = \frac{\mathbb{P}(M=0)}{\mathbb{P}(M=0 \mid Z=z)} \Rightarrow \text{accounts for distr. shift}$$

*Note: Here, only uncorrupted data points are used, as they reflect the true distribution of the scores under covariate shift.

Weighted conformal prediction [Tibshirani et al. '19]

• We consider only the scores of non-corrupted samples and **weight** their distribution by the ratio of likelihoods between the test and train data:

$$w(z) = \frac{\mathbb{P}(M=0)}{\mathbb{P}(M=0 \mid Z=z)}$$

• The threshold $Q^{WCP}(Z^{test})$ is the $1 - \alpha$ empirical quantile of the **weighted distribution** of the uncorrupted samples' scores

Weighted conformal prediction [Tibshirani et al. '19]

• We consider only the scores of non-corrupted samples and **weight** their distribution by the ratio of likelihoods between the test and train data:

$$w(z) = \frac{\mathbb{P}(M=0)}{\mathbb{P}(M=0 \mid Z=z)}$$

- The threshold $Q^{WCP}(Z^{test})$ is the 1α empirical quantile of the **weighted distribution** of the uncorrupted samples' scores
- The prediction set is constructed as

$$C^{\text{WCP}}(X^{\text{test}}, Z^{\text{test}}) = \{ y : S(X^{\text{test}}, y) \le Q^{\text{WCP}}(Z^{\text{test}}) \}$$

+ Achieves the desired coverage level even under presence of corrupted samples!

- Infeasible! Requires access to the unknown Z^{test}

Proposed method: Privileged Conformal Prediction

Privileged conformal prediction

- Apply WCP on each calibration point to obtain a corresponding threshold $Q^{WCP}(Z_i)$ for the *i*-th sample
- Take Q^{PCP} as the (1β) -empirical quantile of $\{Q^{\text{WCP}}(Z_i)\}_{i=1}^n$

Privileged conformal prediction

- Apply WCP on each calibration point to obtain a corresponding threshold $Q^{WCP}(Z_i)$ for the *i*-th sample
- Take Q^{PCP} as the (1β) -empirical quantile of $\{Q^{\text{WCP}}(Z_i)\}_{i=1}^n$
- Construct the prediction set for Y_{test}

$$C^{\text{PCP}}(X_{\text{test}}) = \{y: S(X_{\text{test}}, y) \le Q^{\text{PCP}}\}$$

Privileged conformal prediction

- Apply WCP on each calibration point to obtain a corresponding threshold $Q^{WCP}(Z_i)$ for the *i*-th sample
- Take Q^{PCP} as the (1β) -empirical quantile of $\{Q^{\text{WCP}}(Z_i)\}_{i=1}^n$
- Construct the prediction set for Y_{test}

$$C^{PCP}(X_{\text{test}}) = \{y: S(X_{\text{test}}, y) \le Q^{PCP}\}$$

 $\{w(Z_i)\}_i$ are exch. + Q is an increasing function $\Rightarrow Q^{PCP}$ is conservative $Q^{WCP}(Z^{test})$ $\Rightarrow PCP$ is valid

Privileged conformal prediction is valid

Theorem

If $\{(X_i, Y_i, Z_i, M_i)\}_{i=1}^{n+1}$ are exch., and P_Z is absolutely continuous with respect to $P_{Z|M=0}$, then,

$$\mathbb{P}[Y_{\text{test}} \in C^{\text{PCP}}(X_{\text{test}})] \ge 1 - \alpha$$

+ Finite sample, dist. free guarantee!

+ Does not require Z^{test} !

Application: noisy labels

Experiment: CIFAR-10N – noisy labels

- <u>Task</u>: classify the object in an image (K = 10 classes)
- Clean *Y*: the correct object label
- Observed Y^{obs} : obtained by a single human annotator (incorrect for M = 1)
- PI Z = information about the annotator.

Conclusion and uncovered topics

Conclusion

- Proposed PCP to handle imperfect data using PI
- PCP achieves comparable performance to the infeasible WCP
- Coverage rate is supported by theoretical guarantees

Uncovered topics (ongoing work)

- Adaptation of PCP for scarce data
- Is PCP robust to inaccurate weights?
- Is PCP still valid if the PI Z does not satisfy the conditional independence assumption?
 - $(X, Y) \perp M \mid Z$

Thank you!