

Robust Conformal Prediction Using Privileged Information

Shai Feldman, Yaniv Romano

Technion – Israel Institute of Technology

Various forms of corruptions

- Noisy labels
- Missing values
- Low-quality data, uncertainty
- Sensor noise
- Failing measuring equipment

1. Dough (ImageNet label) 2. Pizza 3. Soup bowl 4. …

No 100% accurate data

 \rightarrow corrupted samples

Uncertainty is inevitable!

Setup

- Input: *n* training points $\left\{\left(X_i, Y_i^{\text{obs}}, Z_i, M_i\right)\right\}_{i=1}^n$ \boldsymbol{n} and a test point $(X_{test}$, ?
	- \rightarrow exchangeable (e.g., i.i.d.) samples from unknown joint dist.
- $X \in \mathcal{X}$: features
- $Y^{obs} \in \mathcal{Y}$: observed label/response
- \blacktriangleright $Y \in \mathcal{Y}$: ground truth label
	- $Z \in \mathcal{Z}$: privileged information (PI) available only during training time
		- E.g., The annotator's level of expertise
	- $M \in \{0,1\}$: noise indicator $M = 1 \Leftrightarrow Y^{\text{obs}}$ is noisy
	- Assumption: the PI Z explains the corruption appearances $(X, Y) \perp M \perp Z$

* See paper for a more general framework covering missing or noisy features and labels.

Ultimate goal: reliable UQ under corruptions

• Input: *n* training points $\left\{\left(X_i, Y_i^{\text{obs}}, Z_i, M_i\right)\right\}_{i=1}^n$ \boldsymbol{n} and a test point $(X_{test}$, ?

 \rightarrow exchangeable (e.g., i.i.d.) samples from unknown joint dist.

- $X_{\text{test}} = X_{n+1} \in \mathcal{X}$: clean test features
- $Y_{\text{test}} = Y_{n+1} \in \mathcal{Y}$: clean, unknown, test response

Wish to use any ML algorithm to construct a marginal **distribution-free prediction set** $\mathbb{P}[Y_{\text{test}} \in C(X_{\text{test}})] \ge 1 - \alpha$ (e.g., 90%)

 $\alpha \in (0,1)$ is a user-specified miscoverage rate

Ultimate goal: reliable UQ under corruptions

- Input: *n* training points $\left\{\left(X_i, Y_i^{\text{obs}}, Z_i, M_i\right)\right\}_{i=1}^n$ \boldsymbol{n} and a test point $(X_{test}$, ?
	- \rightarrow exchangeable (e.g., i.i.d.) samples from unknown joint dist.
- $X_{\text{test}} = X_{n+1} \in \mathcal{X}$: clean test features
- $Y_{\text{test}} = Y_{n+1} \in \mathcal{Y}$: clean, unknown, test response

Wish to use any ML algorithm to construct a marginal **distribution-free prediction set** $\mathbb{P}[Y_{\text{test}} \in C(X_{\text{test}})] \ge 1 - \alpha$ (e.g., 90%)

 $\alpha \in (0,1)$ is a user-specified miscoverage rate

- Construct $C(X_{\text{test}})$ using the *observed* corrupted data
- Guarantee that clean Y_{test} is covered in $C(X_{\text{test}})$

how and under what conditions is it possible?

Background on conformal prediction

Conformal prediction [Vovk et al. '99; Papadopoulos et al. '12, Lei et al. '18; ...]

- Input: pre-trained predictive model \hat{f} , and holdout calibration set $\{(X_i, Y_i)\}_{i=1}^n$
- **Process**
	- Compute non-conformity scores $s_i = S(X_i, Y_i)$ for all i

a measure of goodness-of-fit (the lower the better), e.g., $s_i = |\hat{f}(X_i) - Y_i|$

Conformal prediction [Vovk et al. '99; Papadopoulos et al. '12, Lei et al. '18; ...]

- Input: pre-trained predictive model \hat{f} , and holdout calibration set $\{(X_i, Y_i)\}_{i=1}^n$
- **Process**
	- Compute non-conformity scores $s_i = S(X_i, Y_i)$ for all i
	- Compute* $\widehat{q}^{\rm clean} =$ the $(1-\alpha)$ -empirical quantile of $\{s_i\}_{i=1}^n$
- **Output:** prediction set

*missing a small correction term

Conformal prediction is valid under exchangeability

Theorem (Vovk et al. '99; Papadopoulos et al. '12; Lei et al. '18; R., Patterson, Candes '19, …) If (X_1, Y_1) , ..., (X_n, Y_n) and $(X_{\text{test}}, Y_{\text{test}})$ are exch. Then, $\mathbb{P}\left[Y_{\text{test}} \in C\left(X_{\text{test}}, \hat{q}^{\text{clean}}\right)\right] \geq 1 - \alpha$ (e.g., 90%)

+ Exchangeability is the only assumption

- Assumes that the training data is clean

Weighted conformal prediction [Tibshirani et al. '19]

• We consider only the scores of non-corrupted samples and **weight** their distribution by the ratio of likelihoods between the test and train data:

$$
w(z) = \frac{\mathbb{P}(M = 0)}{\mathbb{P}(M = 0 | Z = z)} \Rightarrow
$$
 accounts for distr. shift

***Note**: Here, only uncorrupted data points are used, as they reflect the true distribution of the scores under covariate shift.

Weighted conformal prediction [Tibshirani et al. '19]

• We consider only the scores of non-corrupted samples and **weight** their distribution by the ratio of likelihoods between the test and train data:

$$
w(z) = \frac{\mathbb{P}(M=0)}{\mathbb{P}(M=0 \mid Z=z)}
$$

• The threshold $Q^{\text{WCP}}(Z^{\text{test}})$ is the $1-\alpha$ empirical quantile of the weighted **distribution** of the uncorrupted samples' scores

Weighted conformal prediction [Tibshirani et al. '19]

• We consider only the scores of non-corrupted samples and **weight** their distribution by the ratio of likelihoods between the test and train data:

$$
w(z) = \frac{\mathbb{P}(M=0)}{\mathbb{P}(M=0 \mid Z=z)}
$$

- The threshold $Q^{\text{WCP}}(Z^{\text{test}})$ is the $1-\alpha$ empirical quantile of the weighted **distribution** of the uncorrupted samples' scores
- The prediction set is constructed as

$$
C^{WCP}(X^{\text{test}}, Z^{\text{test}}) = \{y : S(X^{\text{test}}, y) \le Q^{WCP}(Z^{\text{test}})\}
$$

+ Achieves the desired coverage level even under presence of corrupted samples!

- Infeasible! Requires access to the unknown $Z^{\rm test}$

Proposed method: Privileged Conformal Prediction

Privileged conformal prediction

- Apply WCP on each calibration point to obtain a corresponding threshold $Q^{\text{WCP}}(Z_i)$ for the *i*-th sample
- Take Q^{PCP} as the (1β) -empirical quantile of $\left\{Q^{\text{WCP}}(Z_i)\right\}_{i=1}^n$ \boldsymbol{n}

Privileged conformal prediction

- Apply WCP on each calibration point to obtain a corresponding threshold $Q^{\text{WCP}}(Z_i)$ for the *i*-th sample
- Take Q^{PCP} as the (1β) -empirical quantile of $\left\{Q^{\text{WCP}}(Z_i)\right\}_{i=1}^n$ \boldsymbol{n}
- Construct the prediction set for Y_{test}

$$
C^{PCP}(X_{\text{test}}) = \{y : S(X_{\text{test}}, y) \le Q^{PCP}\}
$$

Privileged conformal prediction

- Apply WCP on each calibration point to obtain a corresponding threshold $Q^{\text{WCP}}(Z_i)$ for the *i*-th sample
- Take Q^{PCP} as the (1β) -empirical quantile of $\left\{Q^{\text{WCP}}(Z_i)\right\}_{i=1}^n$ \boldsymbol{n}
- Construct the prediction set for Y_{test}

$$
C^{PCP}(X_{\text{test}}) = \{y : S(X_{\text{test}}, y) \le Q^{PCP}\}
$$

 $\{w(Z_i)\}\$ i are exch. + Q is an increasing function $\Rightarrow Q^{\text{PCP}}$ is conservative $Q^{\text{WCP}}(Z^{\text{test}})$ \Rightarrow PCP is valid

Privileged conformal prediction is valid

Theorem

If $\{(X_i, Y_i, Z_i, M_i)\}_{i=1}^{n+1}$ are exch., and P_Z is absolutely continuous with respect to $P_{Z|M=0}$, then,

$$
\mathbb{P}[Y_{\text{test}} \in C^{\text{PCP}}(X_{\text{test}})] \ge 1 - \alpha
$$

+ Finite sample, dist. free guarantee!

+ Does not require Z^{test} !

Application: noisy labels

Experiment: CIFAR-10N – noisy labels

- Task: classify the object in an image $(K = 10$ classes)
- Clean Y : the correct object label
- Observed Y^{obs} : obtained by a single human annotator (incorrect for $M = 1$)
- PI $Z =$ information about the annotator.

Conclusion and uncovered topics

Conclusion

- Proposed PCP to handle imperfect data using PI
- PCP achieves comparable performance to the infeasible WCP
- Coverage rate is supported by theoretical guarantees

Uncovered topics (ongoing work)

- Adaptation of PCP for scarce data
- Is PCP robust to inaccurate weights?
- Is PCP still valid if the PI Z does not satisfy the conditional independence assumption?
	- (X, Y) \perp $M \mid Z$

Thank you!