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Bayesian structured pruning 

without threshold tuningBACKGROUND: We want to balance 
accuracy and compression in a 
principled way. We do so with 
variational inference and Bayesian 
Model Reduction (BMR).
BMRS in a nutshell
• Apply multiplicative noise to 

network structures (Neklyudov et al. 
2017)

𝒉! = 𝜃! ⋅ 𝒘!𝒉𝒊#𝟏 	
𝑞% 𝜃! =	LogN &,( 𝜃! 𝜇! , 𝜎!)

𝑝 𝜃! =	LogU &,( (𝜃!)
• Use Bayesian Model Reduction 

(BMR) to find what to prune

Δ𝐹 ≜ log
7𝑝 𝐷
𝑝 𝐷 = 	log𝔼 *+[

𝑞%(𝜃)
𝑝(𝜃) ]

RESULTS
• BMRS finds near-optimal point w/ 

post-training pruning
• Good compression + maintains 

accuracy w/ continuous pruning
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BMRS: Bayesian Model Reduction 
for Structured Pruning

Structures are pruned using an efficient calculation based on the statistics of the variational distribution
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Also read our 
critical perspective 

of AI efficiency

Two variants
• BMRS𝒩 Δ𝐹:
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• BMRS𝒰 Δ𝐹:
log𝑏′#log𝑎′
log𝑏#log𝑎 ≤ 𝑞%(𝑎′ ≤ 𝜃 ≤ 𝑏′)

• BMRS𝒩 is thresholdless
• BMRS𝒰 can be tuned…

• …and has a connection to floating 
point precision
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• Different pruning functions are learned

CNN performance on CIFAR10

Spearman rank correlation of pruning methods

CNN performance on CIFAR10

Continuous pruning results


