BMRS: Bayesian Model Reduction for Structured Pruning

Dustin Wright, Christian Igel,

Raghavendra Selvan

BACKGROUND: We want to balance accuracy and compression in a principled way. We do so with variational inference and Bayesian Model Reduction (BMR). **BMRS** in a nutshell

 Apply multiplicative noise to network structures (Neklyudov et al. 2017)

$$h_{i} = \theta_{i} \cdot (\boldsymbol{w}_{i} \boldsymbol{h}_{i-1})$$

$$q_{\phi}(\theta_{i}) = \operatorname{LogN}_{[a,b]}(\theta_{i} | \mu_{i}, \sigma_{i}^{2})$$

$$p(\theta_{i}) = \operatorname{LogU}_{[a,b]}(\theta_{i})$$

 Use Bayesian Model Reduction (BMR) to find what to prune

$$\Delta F \triangleq \log \frac{\tilde{p}(D)}{p(D)} = \log \mathbb{E}_{\tilde{p}}\left[\frac{q_{\phi}(\theta)}{p(\theta)}\right]$$

RESULTS

- BMRS finds near-optimal point w/ post-training pruning
- Good compression + maintains accuracy w/ continuous pruning

	MP	NIST	Fash-	MNIST	CIFAR10						
Pruning Method	Comp. (%)	Acc.	Comp. (%)	Acc.	Comp. (%)	Acc.					
	MLP										
None	0.00 ± 0.00	97.43 ± 0.14	0.00 ± 0.00	88.17 ± 0.20	0.00 ± 0.00	44.94 ± 0.40					
L2	43.11 ± 2.06	10.39 ± 0.32	87.86 ± 2.27	18.23 ± 10.22	42.89 ± 2.64	10.00 ± 0.00					
$E[\theta]$	52.08 ± 1.71	96.88 ± 0.15	91.76 ± 0.81	85.59 ± 0.26	77.99 ± 1.54	43.39 ± 0.46					
SNR	58.57 ± 2.01	96.92 ± 0.08	99.83 ± 0.00	10.00 ± 0.00	75.93 ± 1.26	43.97 ± 0.46					
$BMRS_N$	48.86 ± 1.32	96.95 ± 0.19	93.20 ± 0.66	84.99 ± 0.35	76.36 ± 1.08	43.59 ± 0.29					
BMRS _U -8	48.73 ± 1.90	96.93 ± 0.16	93.02 ± 0.81	85.01 ± 0.32	77.17 ± 0.98	43.45 ± 0.42					
$BMRS_{\mathcal{U}}-4$	54.47 ± 1.74	96.99 ± 0.13	91.57 ± 0.71	85.79 ± 0.34	76.63 ± 0.94	44.06 ± 0.40					
	Lenet5										
None	0.00 ± 0.00	99.07 ± 0.09	0.00 ± 0.00	89.16 ± 0.27	0.00 ± 0.00	67.62 ± 0.77					
L2	83.42 ± 1.92	11.35 ± 0.00	83.62 ± 1.69	10.00 ± 0.00	52.29 ± 2.18	10.00 ± 0.00					
$E[\theta]$	88.29 ± 1.00	51.30 ± 41.12	89.71 ± 0.56	50.93 ± 33.45	66.19 ± 1.36	65.83 ± 0.90					
SNR	92.66 ± 5.77	62.70 ± 41.93	98.47 ± 3.45	17.01 ± 21.03	70.29 ± 2.02	67.68 ± 0.52					
$BMRS_N$	86.90 ± 1.15	95.59 ± 0.94	88.02 ± 1.00	77.90 ± 2.44	62.87 ± 1.64	66.14 ± 0.70					
$BMRS_{\mathcal{U}}-8$	86.11 ± 1.37	95.27 ± 1.02	87.61 ± 0.72	77.23 ± 3.49	62.54 ± 1.49	66.28 ± 1.07					
$BMRS_{U}-4$	87.58 ± 1.01	96.66 ± 0.59	88.72 ± 0.73	81.10 ± 1.50	68.07 ± 1.95	67.66 ± 0.59					

Bayesian structured pruning without threshold tuning

Structures are pruned using an efficient calculation based on the statistics of the variational distribution

Also read our critical perspective of Al efficiency

Two variants

• BMRS $_{\mathcal{N}} \Delta F$:

$$\frac{1}{2}\log\frac{\tilde{\sigma}_q^2}{2\pi\tilde{\sigma}_p^2\sigma_q^2} + \log\frac{Z_{\tilde{q}}(\log b - \log a)}{Z_{\tilde{p}}Z_q}$$
$$-\frac{1}{2}(\frac{\mu_q^2}{\sigma_q^2} + \frac{\tilde{\mu}_p^2}{\tilde{\sigma}_p^2} - \frac{\tilde{\mu}_q^2}{\tilde{\sigma}_q^2})$$

• BMRS_u
$$\Delta F$$
:

$$\frac{\log b' - \log a'}{\log b - \log a} \le q_{\phi}(a' \le \theta \le b')$$
• BMRS_N is thresholdless
• BMRS_u can be tuned...
CNN performance on CIFAR10

$$\int_{0}^{0} \int_{0}^{0} \int_{0$$

...and has a connection to **floating** ulletpoint precision

Mantissas: $m \sim (m \log B)^{-1}$, $\frac{1}{B} \leq m \leq 1$

$$\tilde{p}(\theta): \begin{cases} \left(\theta \log \frac{2^{p_2}}{2^{p_1}}\right)^{-1}, \frac{1}{2^{p_2}} \le \theta \le \frac{1}{2^{p_1}}\\ 0, & \text{otherwise} \end{cases}$$

Different pruning functions are learned

Spearman rank correlation of pruning methods

SNR	1	1	0.86	0.95	0.47	0.27					
Etheta	1	1	0.86	0.95	0.47	0.27					
L2	0.86	0.86	1	0.81	0.33	0.21					
BMRS_N	0.95	0.95	0.81	1	0.49	0.32					
BMRS_U-8	0.47	0.47	0.33	0.49	1	0.8					
BMRS_U-4	0.27	0.27	0.21	0.32	0.8	1					
	SNR	Etheta		BMRS_N	BMRS_U-8	BMRS_U-4					

University of Copenhagen