

QUEST: Quadruple Multimodal Contrastive Learning with Constraints and Self-Penalization

Qi Song¹^{*}, Tianxiang Gong²^{*}, Shiqi Gao², Haoyi Zhou^{1,3}[†], Jianxin Li^{2,3} ¹School of Software, Beihang University ²School of Computer Science and Engineering, Beihang University ³Zhongguancun Laboratory, Beijing {songqi23, gongtx, gaoshiqi, haoyi, lijx}@buaa.edu

*Equal contribution

Corresponding author.

■ **Background & Motivation**

- \blacksquare Contrastive learning treats all negative samples equally, ignoring the potential semantic relationships between negative samples and the anchor.
- Contrastive learning often neglects significant portions of input information, leading to feature suppression and shortcut learning.

Figure1. Shared and unique Information in Multimodal Multi-view Scenario.

■ **Background & Motivation**

◼ Current contrastive learning methods focus on maximizing mutual information between two views while ignoring unique information.

Figure 2: Feature suppression in multi-view contrastive learning. We define $I(X_A; X_B; Y)$ as taskrelated shared information, $I(X_A; Y|X_B)$ and $I(X_B; Y|X_A)$ as task-related unique information related to task Y in modalities X_A and X_B , respectively. Contrastive losses, such as InfoNCE, tend to maximize the task-related shared information while suppressing the task-related unique information in each modality. Left: before training with InfoNCE. Right: after training with InfoNCE.

I Architecture Overview

■ Use extra unique decoder to capture unique information simultaneously with constraints and selfpenalization.

Figure3. Left: An overview of our method's framework. Right: The quaternion embedding space, in which we orthogonalize the representation of high-dimensional data to extend the solution space.

■ **Shared Decoder and Unique Decoder**

E For each modality, input data X_i is transformed by a modality-specific encoder $\mathcal{F}_{\mathcal{M}_i}(\cdot)$ into a general representation $H_{\mathcal{M}_i}$. Two decoders $\mathcal{G}_{\mathcal{M}_i}^s(\cdot)$ and $\mathcal{G}_{\mathcal{M}_i}^u(\cdot)$ then separate shared and unique information from $\mathbf{H}_{\mathcal{M}_i}$.

$$
\mathbf{Z}_{i}^{\mathbf{u}} = \mathcal{G}_{\mathcal{M}_{i}}^{\mathbf{u}}(\mathbf{H}_{\mathcal{M}_{i}}; \Phi_{i}) = \mathcal{G}_{\mathcal{M}_{i}}^{\mathbf{u}}(\mathcal{F}_{\mathcal{M}_{i}}(\mathbf{X}_{i}; \Theta_{i}); \Phi_{i}),
$$

$$
\mathbf{Z}_{i}^{\mathbf{s}} = \mathcal{G}_{\mathcal{M}_{i}}^{\mathbf{s}}(\mathbf{H}_{\mathcal{M}_{i}}; \Psi_{i}) = \mathcal{G}_{\mathcal{M}_{i}}^{\mathbf{s}}(\mathcal{F}_{\mathcal{M}_{i}}(\mathbf{X}_{i}; \Theta_{i}); \Psi_{i}).
$$

■ **Shared Information Constraint**

 \blacksquare In multimodal and multi-view scenarios, maximizing the lower bound of mutual information (MI) between representations from different views encourages the shared decoder to learn task-related agreement.

$$
\mathcal{L}_{\text{SIC}} = \sum_{i,j} \mathbb{1}_{\mathcal{M}_i \neq \mathcal{M}_j} \mathbb{E}_{\mathbf{Z}_i^{\mathbf{s}}} \left[-\log \frac{\exp(s(\mathbf{Z}_i^{\mathbf{s}}, \mathbf{Z}_j^{\mathbf{s}+})/\tau)}{\exp(s(\mathbf{Z}_i^{\mathbf{s}}, \mathbf{Z}_j^{\mathbf{s}+})/\tau) + \sum_{k=1}^m \mathbb{1}_{\hat{\mathbf{y}} - \exp(s(\mathbf{Z}_i^{\mathbf{s}}, \mathbf{Z}_{jk}^{\mathbf{s}-})/\tau)} \right].
$$

■ **Unique Information Constraint**

- In contrast to shared information, unique information is modality-specific and task-relevant, providing essential insights for downstream tasks.
- Firstly, we derive the representation space of normal vectors for shared and unique embedding spaces through cross-product calculations:

$$
\mathbf{Z}_i^{\mathbf{n}} = \mathbf{Z}_i^{\mathbf{s}} \times \mathbf{Z}_i^{\mathbf{u}}
$$

■ In the newly projected space, our objectives aim to maximize the alignment of unique representation from different modalities within the plane spanned by the shared representation

$$
\mathcal{L}_{\text{UIC}} = \sum_{i,j} \mathbb{1}_{\mathcal{M}_i \neq \mathcal{M}_j} \mathbb{E}_{\mathbf{Z}_i^n} \left[-\log \frac{\exp(s(\mathbf{Z}_i^n, \mathbf{Z}_j^{n+})/\tau)}{\exp(s(\mathbf{Z}_i^n, \mathbf{Z}_j^{n+})/\tau) + \sum_{k=1}^m \mathbb{1}_{\hat{y} - \exp(s(\mathbf{Z}_i^n, \mathbf{Z}_{jk}^{n-})/\tau)} \right] + \sum_i \sum_j \frac{\mathbf{Z}_{ij}^s \cdot \mathbf{Z}_{ij}^u}{\|\mathbf{Z}_{ij}^s\| \|\mathbf{Z}_{ij}^u\|}
$$

■ Self-Penalization Constraint

- Challenges in practical Contrastive learning implementations
	- \blacksquare Uniform treatment of all other samples within a batch B as negative examples
	- Misclassification of semantically similar samples as negative
- Use the intra-model shared information similar to penalization to term guide the optimization of unique

information

■ **Experiment Setting**

- Datasets: Flickr30k, MS-COCO, Flickr30k-shortcuts, MS-COCO-shortcuts
- Baseline: Vanilla InfoNCE, Latent Target Decoding (LTD), Implicit Feature Modification (IFM)

(a) Caption: "A bathroom sink with wood finish cabinets. 0 3 9 9 6 5."

(b) Caption: "A guy in a brown shirt has just hit a tennis ball. 0 7 7 1 1 4."

Figure $4^{[1]}$. Two andom samples from the MS-COCO dataset including shortcuts added on both the image andcaption.

[1]Demonstrating and Reducing Shortcuts in Vision-Language Representation Learning

■ **Results on public benchmark**

Table1:Result on Flickr30k and MS-COCO with varied method. sc denotes shortcut, we evaluate CLIP and VSE++ w/wo shortcut on i2t and i2i task. QUEST outperforms InfoNCE and achieve superior performance compare with other baselines in most cases. †denote use of ltd.

■ **Ablation Study**

Table2: ablation study on image caption retrieval task with different training objectives. D1 and D2denote decoders in the architecture. Decoder with all \times beneath are omitted, while those with $\sqrt{ }$ indicate optimization with corresponding objective functions. Bold and underlined numbers indicate the best and second-best results, respectively.

■ **Extend To More Modalities**

Figure 5: Performance comparison of InfoNCE and QUEST methods with additional audio modality on image-to-audio (i2a) and audio-toimage (a2i) retrieval tasks across FMA, GTZAN, CLOTHO, and AUDIOCAPS datasets.

◼ **Visualization**

北京航空航天大学

RAL INFORMATION
CESSING SYSTEMS

Figure 6: Case Study: (a) Image-to-text retrieval, where the results of L_{OUEST} and $L_{InfoNCE}$ are denoted by italics and underlines, respectively. (b) Text-to-image retrieval, where red and green borders indicate the top-5 retrievals using L_{OUEST} , while blue borders represent those using $L_{InfoNCE}$.

■ **Conclusions**

- We propose QUEST, a novel multimodal contrastive learning method that effectively captures and preserves more task-relevant unique information from individual modalities.
- Quaternions indirectly optimize unique and shared information simultaneously, expanding the unique representational space.
- Unique decoders extract unique and shared information through constraints and selfpenalization, outperforming SOTA methods.

QUEST: Quadruple Multimodal Contrastive Learning with Constraints and Self-Penalization

Qi Song¹^{*}, Tianxiang Gong²^{*}, Shiqi Gao², Haoyi Zhou^{1,3}[†], Jianxin Li^{2,3} ¹School of Software, Beihang University ²School of Computer Science and Engineering, Beihang University ³Zhongguancun Laboratory, Beijing {songqi23, gongtx, gaoshiqi, haoyi, lijx}@buaa.edu

*Equal contribution

Corresponding author.