

QUEST: Quadruple Multimodal Contrastive Learning with Constraints and Self-Penalization

Qi Song¹*, Tianxiang Gong²*, Shiqi Gao², Haoyi Zhou^{1,3}⁺, Jianxin Li^{2,3} ¹School of Software, Beihang University ²School of Computer Science and Engineering, Beihang University ³Zhongguancun Laboratory, Beijing {songqi23, gongtx, gaoshiqi, haoyi, lijx}@buaa.edu

*Equal contribution

[†]Corresponding author.

Background & Motivation

- Contrastive learning treats all negative samples equally, ignoring the potential semantic relationships between negative samples and the anchor.
- Contrastive learning often neglects significant portions of input information, leading to feature suppression and shortcut learning.

Figure1. Shared and unique Information in Multimodal Multi-view Scenario.

Background & Motivation

Current contrastive learning methods focus on maximizing mutual information between two views while ignoring unique information.

Figure 2: Feature suppression in multi-view contrastive learning. We define $I(X_A; X_B; Y)$ as taskrelated shared information, $I(X_A; Y|X_B)$ and $I(X_B; Y|X_A)$ as task-related unique information related to task Y in modalities X_A and X_B , respectively. Contrastive losses, such as InfoNCE, tend to maximize the task-related shared information while suppressing the task-related unique information in each modality. Left: before training with InfoNCE. Right: after training with InfoNCE.

Architecture Overview

Use extra unique decoder to capture unique information simultaneously with constraints and selfpenalization.

Figure3. Left: An overview of our method's framework. Right: The quaternion embedding space, in which we orthogonalize the representation of high-dimensional data to extend the solution space.

QUEST: Quadruple Multimodal Contrastive Learning with Constraints and Self-Penalization, accepted by NeurIPS 2024 (Poster)

Shared Decoder and Unique Decoder

For each modality, input data X_i is transformed by a modality-specific encoder $\mathcal{F}_{\mathcal{M}_i}(\cdot)$ into a general representation $H_{\mathcal{M}_i}$. Two decoders $\mathcal{G}_{\mathcal{M}_i}^s(\cdot)$ and $\mathcal{G}_{\mathcal{M}_i}^u(\cdot)$ then separate shared and unique information from $H_{\mathcal{M}_i}$.

$$\mathbf{Z}_{i}^{\mathbf{u}} = \mathcal{G}_{\mathcal{M}_{i}}^{\mathbf{u}}(\mathbf{H}_{\mathcal{M}_{i}}; \Phi_{i}) = \mathcal{G}_{\mathcal{M}_{i}}^{\mathbf{u}}(\mathcal{F}_{\mathcal{M}_{i}}(\mathbf{X}_{i}; \Theta_{i}); \Phi_{i}),$$

$$\mathbf{Z}_{i}^{\mathbf{s}} = \mathcal{G}_{\mathcal{M}_{i}}^{\mathbf{s}}(\mathbf{H}_{\mathcal{M}_{i}}; \Psi_{i}) = \mathcal{G}_{\mathcal{M}_{i}}^{\mathbf{s}}(\mathcal{F}_{\mathcal{M}_{i}}(\mathbf{X}_{i}; \Theta_{i}); \Psi_{i}).$$

Shared Information Constraint

In multimodal and multi-view scenarios, maximizing the lower bound of mutual information (MI) between representations from different views encourages the shared decoder to learn task-related agreement.

$$\mathcal{L}_{\text{SIC}} = \sum_{i,j} \mathbb{1}_{\mathcal{M}_i \neq \mathcal{M}_j} \mathbb{E}_{\mathbf{Z}_i^{\mathbf{s}}} \left[-\log \frac{\exp(s(\mathbf{Z}_i^{\mathbf{s}}, \mathbf{Z}_j^{\mathbf{s}+})/\tau)}{\exp(s(\mathbf{Z}_i^{\mathbf{s}}, \mathbf{Z}_j^{\mathbf{s}+})/\tau) + \sum_{k=1}^m \mathbb{1}_{\hat{\mathbf{y}}^-} \exp(s(\mathbf{Z}_i^{\mathbf{s}}, \mathbf{Z}_{jk}^{\mathbf{s}-})/\tau)} \right].$$

Unique Information Constraint

- In contrast to shared information, unique information is modality-specific and task-relevant, providing essential insights for downstream tasks.
- Firstly, we derive the representation space of normal vectors for shared and unique embedding spaces through cross-product calculations:

$$\mathbf{Z}_i^{\mathbf{n}} = \mathbf{Z}_i^{\mathbf{s}} \times \mathbf{Z}_i^{\mathbf{u}}$$

In the newly projected space, our objectives aim to maximize the alignment of unique representation from different modalities within the plane spanned by the shared representation

$$\mathcal{L}_{\text{UIC}} = \sum_{i,j} \mathbb{1}_{\mathcal{M}_i \neq \mathcal{M}_j} \mathbb{E}_{\mathbf{Z}_i^{\mathbf{n}}} \left[-\log \frac{\exp(s(\mathbf{Z}_i^{\mathbf{n}}, \mathbf{Z}_j^{\mathbf{n}+})/\tau)}{\exp(s(\mathbf{Z}_i^{\mathbf{n}}, \mathbf{Z}_j^{\mathbf{n}+})/\tau) + \sum_{k=1}^m \mathbb{1}_{\hat{\mathbf{y}}^-} \exp(s(\mathbf{Z}_i^{\mathbf{n}}, \mathbf{Z}_{jk}^{\mathbf{n}-})/\tau)} \right] + \sum_i \sum_j \frac{\mathbf{Z}_{ij}^s \cdot \mathbf{Z}_{ij}^u}{\|\mathbf{Z}_{ij}^s\|\|\mathbf{Z}_{ij}^u\|}$$

Self-Penalization Constraint

- Challenges in practical Contrastive learning implementations
 - Uniform treatment of all other samples within a batch B as negative examples
 - Misclassification of semantically similar samples as negative
- Use the intra-model shared information similar to penalization to term guide the optimization of unique

information

QUEST: Quadruple Multimodal Contrastive Learning with Constraints and Self-Penalization, accepted by NeurIPS 2024 (Poster)

Conclusion

Experiment Setting

- Datasets: Flickr30k, MS-COCO, Flickr30k-shortcuts, MS-COCO-shortcuts
- Baseline: Vanilla InfoNCE, Latent Target Decoding (LTD), Implicit Feature Modification (IFM)

(a) **Caption**: "A bathroom sink with wood finish cabinets. 0 3 9 9 6 5."

(b) **Caption**: "A guy in a brown shirt has just hit a tennis ball. 0 7 7 1 1 4."

Figure 4^[1]. Two andom samples from the MS-COCO dataset including shortcuts added on both the image andcaption.

[1]Demonstrating and Reducing Shortcuts in Vision-Language Representation Learning

QUEST: Quadruple Multimodal Contrastive Learning with Constraints and Self-Penalization, accepted by NeurIPS 2024 (Poster)

Results on public benchmark

Table1:Result on Flickr30k and MS-COCO with varied method. sc denotes shortcut, we evaluate CLIP and VSE++ w/wo shortcut on i2t and i2i task. QUEST outperforms InfoNCE and achieve superior performance compare with other baselines in most cases. †denote use of ltd.

Method		Flickr30k								MS-COCO							
	sc	i2t			t2i			RSUM	i2t			t2i			RSUM		
		R @1	R@5	R@10	<u>R@1</u>	R@5	R@10	KSUM	R @1	R@5	R@10	R@1	R@5	R@10	ROOM		
								CL	IP								
LINFONCE	×	$86.9_{\pm 0.1}$	$97.4_{\pm 0.1}$	$99.0_{\pm 0.0}$	$72.4_{\pm 0.1}$	$92.1_{\pm 0.0}$	$95.8_{\pm 0.0}$	$543.5_{\pm 1.1}$	$63.8_{\pm 0.3}$	$86.1_{\pm 0.2}$	$92.3_{\pm 0.0}$	46.3 ± 0.3	$74.8_{\pm 0.1}$	$84.1_{\pm 0.2}$	$447.5_{\pm 0.5}$		
LInfoNCE+LTD	×	86.5 ± 0.6	$97.1_{\pm 0.0}$	98.5 ± 0.0	72.4 ± 0.0	$92.3_{\pm 0.0}$	95.9 _{±0.0}	542.8 ± 0.8	63.8 ± 0.0	86.1 ± 0.0	92.3 ± 0.0	46.3 ± 0.0	74.7 ± 0.0	84.1 ± 0.0	447.4 ± 0.0		
LInfoNCE+IFM	×				$73.2_{\pm 0.0}$	$92.2_{\pm 0.0}$	$95.6_{\pm 0.0}$	$544.9_{\pm 0.2}$	$63.0_{\pm 0.1}$	$86.6_{\pm 0.1}$	$92.6_{\pm 0.2}$	$47.2_{\pm 0.0}$	$75.6_{\pm 0.0}$	$84.5_{\pm 0.0}$	$449.5_{\pm 1.7}$		
$\mathcal{L}_{QUEST(Ours)}$	X	$89.3_{\pm0.3}$				$91.5_{\pm 0.3}$	$95.0_{\pm 0.3}$	546.7 _{±1.9}	and the second second		$\textbf{93.6}_{\pm 0.4}$	$\textbf{48.5}_{\pm 0.2}$	$\textbf{75.7}_{\pm 0.5}$	$84.7_{\pm 0.6}$	455.6 _{±2.4}		
LINFONCE	1	$57.2_{\pm 8.3}$	$84.0_{\pm 4.8}$	$91.0_{\pm 1.9}$	$44.9_{\pm 4.5}$	$74.9_{\pm 6.0}$	$84.2_{\pm 2.5}$	$436.2_{\pm 145.0}$	$13.6_{\pm 0.9}$	$31.5_{\pm 2.4}$	$42.2_{\pm 3.7}$	$7.3_{\pm 0.6}$	$22.1_{\pm 1.0}$	$32.7_{\pm 1.7}$	$149.4_{\pm 32.7}$		
LInfoNCE+LTD	1	64.0 ± 1.3	87.8±0.9	93.2 ± 0.8	50.7 ± 0.6	79.8±0.7	88.1 ± 0.5	463.6±17.3		41.8 ± 0.1	54.1 ± 0.1	16.5 ± 0.0	39.4 ± 0.0	52.6 ± 0.1	223.4 ± 0.2		
LInfoNCE+IFM	1	$73.8_{\pm 0.8}$	$91.5_{\pm 0.5}$	$95.6_{\pm 0.0}$	$58.9_{\pm 0.1}$	$84.4_{\pm 0.1}$	$91.1_{\pm 0.2}$	$495.2_{\pm 5.7}$		$46.5_{\pm 2.7}$	$58.2_{\pm 2.5}$	$17.1_{\pm 0.3}$	$38.9_{\pm 0.9}$	$51.3_{\pm 1.0}$	$235.5_{\pm 43.8}$		
L _{QUEST(Ours)}	1	$\textbf{84.2}_{\pm 0.3}$	96.0 _{±0.1}	97.7 _{±0.2}	67.6 _{±0.5}	$\textbf{88.9}_{\pm 0.2}$	$93.4_{\pm 0.1}$	$527.8_{\pm 1.4}$	$50.8_{\pm0.3}$	$\textbf{75.4}_{\pm 0.4}$	$\textbf{84.1}_{\pm 0.4}$	$37.9_{\pm 0.3}$	$65.1_{\pm 0.3}$	$76.1_{\pm 0.4}$	$389.4_{\pm 2.1}$		
		VSE++															
$\mathcal{L}_{InfoNCE}$	X	$52.6_{\pm 1.1}$	$79.8_{\pm 0.1}$	$87.8_{\pm 0.1}$	$39.5_{\pm 0.3}$	$69.8_{\pm 0.0}$	$79.4_{\pm 0.1}$	$409.0_{\pm 4.0}$	$42.2_{\pm 0.1}$	$72.7_{\pm 0.1}$	83.2 ± 0.1	$30.9_{\pm 0.0}$	$61.2_{\pm 0.1}$	73.5 ± 0.1	$363.8_{\pm 2.3}$		
LInfoNCE+LTD	X	$54.1_{\pm 0.1}$	$81.1_{\pm 0.8}$	$88.6_{\pm 0.1}$	$42.5_{\pm 0.0}$	$71.9_{\pm 0.1}$	$81.3_{\pm 0.0}$	$419.6_{\pm 0.1}$	$43.6_{\pm 0.1}$	$73.5_{\pm 0.0}$	$83.7_{\pm 0.0}$	$32.4_{\pm 0.1}$	$62.5_{\pm 0.0}$	$74.7_{\pm 0.0}$	$370.5_{\pm 0.1}$		
LInfoNCE+IFM	×	52.4 ± 0.2	$76.9_{\pm 0.1}$	85.3 ± 0.0	$39.1_{\pm 0.0}$	68.8 ± 0.1	78.2 ± 0.1	400.7 ± 0.0	40.2 ± 0.0	70.8 ± 0.1	$81.6_{\pm 0.1}$	30.8 ± 0.0	61.5 ± 0.0	74.3 ± 0.0	$359.3_{\pm 1.1}$		
$\mathcal{L}_{QUEST(Ours)}$	X	$54.7_{\pm 0.2}$	$\textbf{81.3}_{\pm 0.4}$	$88.8_{\pm 0.3}$	$\textbf{42.9}_{\pm 0.1}$	$\textbf{72.3}_{\pm 0.4}$	$\pmb{81.6}_{\pm 1.1}$	$\textbf{421.6}_{\pm 2.5}$	$45.3_{\pm 0.1}$	$\textbf{75.5}_{\pm 0.5}$	$\textbf{85.4}_{\pm 0.4}$	$\textbf{34.1}_{\pm 0.1}$	$64.5_{\pm 0.2}$	76.3 $_{\pm 0.2}$	$381.1_{\pm 1.5}$		
LINFONCE	1	$0.1_{\pm 0.0}$	$0.4_{\pm 0.0}$	$0.8_{\pm 0.0}$	$0.1_{\pm 0.0}$	$0.4_{\pm 0.0}$	$1.0_{\pm 0.0}$	$2.9_{\pm 0.0}$	0.0 _{±0.0}	$0.1_{\pm 0.0}$	$0.2_{\pm 0.0}$	$0.0_{\pm 0.0}$	$0.1_{\pm 0.0}$	$0.2_{\pm 0.0}$	$0.6_{\pm 0.0}$		
LInfoNCE+LTD	1	$24.7_{\pm 0.5}$	$51.8_{\pm 0.7}$	65.6 _{±1.4}	$20.7_{\pm 1.0}$	$49.2_{\pm 0.6}$	$62.6_{\pm 1.2}$	$274.6_{\pm 4.6}$		$13.7_{\pm 0.6}$	$21.6_{\pm 0.9}$	$3.1_{\pm 0.2}$	$11.0_{\pm 1.6}$	$18.1_{\pm 3.0}$	$71.4_{\pm 3.6}$		
LInfoNCE+IFM	1	$0.0_{\pm 0.0}$	$0.6_{\pm 0.1}$	$0.9_{\pm 0.2}$	$0.1_{\pm 0.0}$	$0.5_{\pm 0.0}$	$1.0_{\pm 0.0}$	$3.2_{\pm 0.8}$	$0.0_{\pm 0.0}$			$0.0_{\pm 0.0}$	$0.1_{\pm 0.0}$	$0.2_{\pm 0.0}$	$0.7_{\pm 0.0}$		
$\mathcal{L}_{QUEST(Ours)^{\dagger}}$	1	$24.9_{\pm 0.4}$		$61.1_{\pm 0.5}$	$17.5_{\pm 0.3}$		$56.5_{\pm 0.8}$	$251.8_{\pm 2.9}$	and the second		$40.6_{\pm 0.9}$			$42.6_{\pm 2.1}$	$160.0_{\pm 5.8}$		

Ablation Study

Table2: ablation study on image caption retrieval task with different training objectives. D1 and D2denote decoders in the architecture. Decoder with all \times beneath are omitted, while those with $\sqrt{}$ indicate optimization with corresponding objective functions. Bold and underlined numbers indicate the best and second-best results, respectively.

	Me	ethods		Flickr30k								MS-COCO							
D1	D2			i2t			t2i			RSUM	i2t			t2i			RSUM		
\mathcal{L}_{SIC}	\mathcal{L}_{SIC}	LUIC	L P-UIC	R@1	R@5	R@10	<u>R@1</u>	R@5	R @10	noem	R @1	R@5	R @10	<u>R@1</u>	R@5	R @10	in our		
				CLIP						CLIP									
1	×	X	×	86.9	97.4	98.8	72.4	92.1	95.8	543.4	63.8	86.1	92.3	46.3	74.8	84.1	447.4		
×	×	1	×	80.8	94.4	96.5	66.9	88.4	92.9	519.9	55.1	81.6	89.4	43.3	72.5	82.9	424.8		
×	×	×	1	85.5	96.6	98.1	70.0	87.3	90.7	528.2	63.0	85.9	91.7	45.2	70.4	79.2	435.4		
1	×	1	×	81.9	96.2	98.0	69.5	90.0	94.2	529.8	64.9	86.6	92.8	47.3	75.1	83.9	450.6		
1	1	×	×	76.6	92.3	95.9	59.0	84.4	90.9	499.1	54.4	79.2	86.7	39.9	68.4	78.9	407.5		
1	×	×	1	89.3	97.8	99.2	73.9	<u>91.5</u>	95.0	546.7	65.4	87.7	93.6	48.5	75.7	84.7	455.6		
							VSE+	+					VSE++						
1	×	×	×	52.6	79.8	87.8	39.5	69.8	79.4	408.9	42.2	72.7	83.2	30.9	61.2	73.5	363.7		
×	×	1	×	47.8	72.8	80.8	36.7	63.2	73.3	374.6	40.7	71.2	82.1	30.3	60.5	73.0	357.8		
×	×	×	1	49.0	74.1	81.3	36.4	64.1	73.1	378.0	40.9	71.4	82.4	30.8	60.6	73.2	359.3		
1	×	1	×	53.3	79.8	87.6	40.5	68.1	78.0	407.3	44.9	74.1	84.4	32.3	62.8	74.7	373.2		
1	×	×	1	54.7	80.3	88.2	42.0	70.3	79.6	415.1	45.3	75.5	85.4	34.1	64.5	76.3	381.1		

Extend To More Modalities

Figure 5: Performance comparison of InfoNCE and QUEST methods with additional audio modality on image-to-audio (i2a) and audio-toimage (a2i) retrieval tasks across FMA, GTZAN, CLOTHO, and AUDIOCAPS datasets.

Conclusion

RAL INFORMATION

北京航空航天大學

Figure 6: Case Study: (a) Image-to-text retrieval, where the results of L_{QUEST} and $L_{InfoNCE}$ are denoted by italics and underlines, respectively. (b) Text-to-image retrieval, where red and green borders indicate the top-5 retrievals using L_{QUEST} , while blue borders represent those using $L_{InfoNCE}$.

QUEST: Quadruple Multimodal Contrastive Learning with Constraints and Self-Penalization, accepted by NeurIPS 2024 (Poster) 13

Conclusions

- We propose QUEST, a novel multimodal contrastive learning method that effectively captures and preserves more task-relevant unique information from individual modalities.
- Quaternions indirectly optimize unique and shared information simultaneously, expanding the unique representational space.
- Unique decoders extract unique and shared information through constraints and selfpenalization, outperforming SOTA methods.

QUEST: Quadruple Multimodal Contrastive Learning with Constraints and Self-Penalization

Qi Song¹*, Tianxiang Gong²*, Shiqi Gao², Haoyi Zhou^{1,3}⁺, Jianxin Li^{2,3} ¹School of Software, Beihang University ²School of Computer Science and Engineering, Beihang University ³Zhongguancun Laboratory, Beijing {songqi23, gongtx, gaoshiqi, haoyi, lijx}@buaa.edu

*Equal contribution

[†]Corresponding author.