RMLR: Extending Multinomial Logistic Regression into General Geometries

Ziheng Chen¹, Yue Song², Rui Wang³, Xiaojun Wu³, Nicu Sebe¹

1 University of Trento, Italy 2 Caltech, USA 3 Jiangnan University, China

Applications of Riemannian Manifolds

Huang, Zhiwu, Jiqing Wu, and Luc Van Gool. "Manifold-valued image generation with wasserstein generative adversarial nets." AAAI, 2019. Chakraborty, Rudrasis, et al. "Manifoldnet: A deep neural network for manifold-valued data with applications." IEEE-TPAMI, 2020. Vemulapalli, Raviteja, et al. Human action recognition by representing 3D skeletons as points in a lie group. CVPR. 2014. Ju, Ce, et al. "Deep geodesic canonical correlation analysis for covariance-based neuroimaging data." ICLR, 2024. Brooks, Daniel, et al. "Deep learning and information geometry for drone micro-Doppler radar classification." RadarConf, 2020.

Motivation

Eqs. (2) and (3) can be naturally extended into manifolds \mathcal{M} by Riemannian operators:

$$p(y = k \mid S) \propto \exp\left(\operatorname{sign}(\langle \tilde{A}_k, \operatorname{Log}_{P_k}(S) \rangle_{P_k}) \| \tilde{A}_k \|_{P_k} \tilde{d}(S, \tilde{H}_{\tilde{A}_k, P_k})\right),$$
(4)

$$\tilde{H}_{\tilde{A}_k, P_k} = \{ S \in \mathcal{M} : g_{P_k}(\operatorname{Log}_{P_k} S, \tilde{A}_k) = 0 \},$$
(5)

where $P_k \in \mathcal{M}, \tilde{A}_k \in T_{P_k} \mathcal{M} \setminus \{0\}, g_{P_k}$ is the Riemannian metric at P_k , and Log_{P_k} is the Riemannian logarithm at P_k . The margin distance is defined as an infimum:

$$\tilde{d}(S, \tilde{H}_{\tilde{A}_k, P_k})) = \inf_{Q \in \tilde{H}_{\tilde{A}_k, P_k}} d(S, Q).$$
(6)

• The key is to solve the margin distance, which could be non-convex on general geometries

Reformulation by Riemannian Trigonometry

$$p(y = k \mid x) \propto \exp\left(\operatorname{sign}(\langle a_k, x - p_k \rangle) \|a_k\| d(x, H_{a_k, p_k})\right),$$

$$H_{a_k, p_k} = \{x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0\},$$
Reformulation
$$d(x, H_{a, p})) = \sin(\angle xpy^*) d(x, p), \quad \text{with } y^* = \underset{y \in H_{a, p} \setminus \{p\}}{\operatorname{arg\,max}} (\operatorname{cos} \angle xpy). \tag{7}$$
Riemannian trigonometry

Definition 3.1 (Riemannian Margin Distance). Let $\tilde{H}_{\tilde{A},P}$ be a Riemannian hyperplane defined in Eq. (5), and $S \in \mathcal{M}$. The Riemannian margin distance from S to $\tilde{H}_{\tilde{A},P}$ is defined as

$$d(S, \tilde{H}_{\tilde{A}, P}) = \sin(\angle SPY^*) d(S, P), \tag{8}$$

where d(S, P) is the geodesic distance, and $Y^* = \operatorname{argmax}(\cos \angle SPY)$ with $Y \in \tilde{H}_{\tilde{A},P} \setminus \{P\}$. The initial velocities of geodesics define $\cos \angle SPY$:

$$\cos \angle SPY = \frac{\langle \operatorname{Log}_P Y, \operatorname{Log}_P S \rangle_P}{\|\operatorname{Log}_P Y\|_P, \|\operatorname{Log}_P S\|_P},\tag{9}$$

where $\langle \cdot, \cdot \rangle_P$ is the Riemannian metric at *P*, and $\|\cdot\|_P$ is the associated norm.

General Results

Theorem 3.2. [] The Riemannian margin distance defined in Def. 3.1 is given as $d(S, \tilde{H}_{\tilde{A}, P}) = \frac{|\langle \operatorname{Log}_P S, \tilde{A} \rangle_P|}{\|\tilde{A}\|_P}.$ **Riemannian Margin distance** (10)Putting the Eq. (10) into Eq. (4), we can a closed-form expression for Riemannian MLR. **Theorem 3.3** (RMLR). [4] Given a Riemannian manifold $\{\mathcal{M}, g\}$, the Riemannian MLR induced by q is Riemannian MLR $p(y = k \mid S \in \mathcal{M}) \propto \exp\left(\langle \operatorname{Log}_{P_k} S, \tilde{A}_k \rangle_{P_k}\right),$ (11)where $P_k \in \mathcal{M}$, $\tilde{A}_k \in T_{P_k} \mathcal{M} \setminus \{\mathbf{0}\}$, and Log is the Riemannian logarithm. $\tilde{A}_k = \Gamma_{O \to P_k} A_k,$ (12) $\tilde{A}_k = L_{P_k \odot Q_{\odot}^{-1} * O} A_k,$ (13)Optimization where $Q \in \mathcal{M}$ is a fixed point, $A_k \in T_Q \mathcal{M} \setminus \{0\}$, Γ is the parallel transportation along geodesic connecting Q and P_k , and $L_{P_k \odot Q_{\odot}^{-1}*,Q}$ denotes the differential map at Q of left translation $L_{P_k \odot Q_{\odot}^{-1}}$ Table 1: Several MLRs on different geometries are special cases of our MLR. Incorporated MLR Geometries Requirements by Our MLR Euclidean MLR (Eq. (1)) N/A Euclidean geometry \checkmark (App. C) Gyro SPD MLRs [50] AIM, LEM & LCM on $\mathcal{S}_{\perp\perp}^n$ ✓(Rem. 4.3) Gyro structures Generality Gyro SPSD MLRs [51] SPSD product gyro spaces Gyro structures \checkmark (App. **D**) Pullback metrics from Flat SPD MLRs [16] (α, β) -LEM & (θ) -LCM on $\mathcal{S}_{\perp\perp}^n$ ✓(Rem. 4.3) the Euclidean space

General Geometries

Riemannian logarithm

Ours

5

N/A

Table 12: The associated Riemannian operators and properties of five basic metrics on SPD manifolds.

Metrics	$g_P(V,W)$	$\operatorname{Log}_P Q$	$\Gamma_{P \to Q}(V)$	Properties
(α,β) -LEM	$\langle \log_{*,P}(V), \log_{*,P}(W) \rangle^{(\alpha,\beta)}$	$(\log_{*,P})^{-1} [\log(Q) - \log(P)]$	$(\log_{*,Q})^{-1} \circ \log_{*,P}(V)$	O(n)-Invariance, Geodesically Completeness
(α,β) -AIM	$\langle P^{-1}V, WP^{-1} \rangle^{(\alpha,\beta)}$	$P^{1/2}\log\left(P^{-1/2}QP^{-1/2}\right)P^{1/2}$	$(QP^{-1})^{1/2}V(P^{-1}Q)^{1/2}$	Lie Group Left-Invariance, O(n)-Invariance, Geodesically Completeness
(α, β) -EM	$\langle V, W \rangle^{(\alpha,\beta)}$	Q - P	V	O(n)-Invariance
LCM	$\sum_{i>j} \tilde{V}_{ij}\tilde{W}_{ij} + \sum_{j=1}^n \tilde{V}_{jj}\tilde{W}_{jj}L_{jj}^{-2}$	$(\operatorname{Chol}^{-1})_{*,L} \left[\lfloor K \rfloor - \lfloor L \rfloor + \mathbb{D}(L) \operatorname{Dlog}(\mathbb{D}(L)^{-1}\mathbb{D}(K)) \right]$	$(\mathrm{Chol}^{-1})_{*,K}\left[\lfloor \tilde{V} \rfloor + \mathbb{D}(K)\mathbb{D}(L)^{-1}\mathbb{D}(\tilde{V})\right]$	Lie Group Bi-Invariance, Geodesically Completeness
BWM	$\frac{1}{2} \langle \mathcal{L}_P[V], W \rangle$	$(PQ)^{1/2} + (QP)^{1/2} - 2P$	$U\left[\sqrt{\frac{\delta_i+\delta_j}{\sigma_i+\sigma_j}}\left[U^\top V U\right]_{ij}\right]U^\top$	O(n)-Invariance

$$\tilde{g}_{P}(V,W) = \frac{1}{\theta^{2}} g_{P^{\theta}}((\phi_{\theta})_{*,P}(V), (\phi_{\theta})_{*,P}(W)), \forall P \in \mathcal{S}_{++}^{n}, V, W \in T_{P}\mathcal{S}_{++}^{n},$$
(14)

Figure 1: Illustration on the deformation (**left**) and Venn diagram (**right**) of metrics on SPD manifolds, where IEM, SREM, and $\frac{1}{4}$ PAM denotes Inverse Euclidean Metric, Square Root Euclidean Metric, and Polar Affine Metric scaled by $\frac{1}{4}$.

Table 2: Properties of deformed metrics on SPD manifolds ($\theta \neq 0$ and $\min(\alpha, \alpha + n\beta) > 0$).

Name	Properties
(θ, α, β) -LEM	Bi-Invariance, $O(n)$ -Invariance, Geodesically Completeness
(θ, α, β) -AIM	Lie Group Left-Invariance, $O(n)$ -Invariance, Geodesically Completeness
(θ, α, β) -EM	O(n)-Invariance
θ -LCM	Lie Group Bi-Invariance, Geodesically Completeness
2θ -BWM	O(n)-Invariance

SPD MLR

Theorem 4.2 (SPD MLRs). [4] By abuse of notation, we omit the subscripts k of A_k and P_k . Given SPD feature S, the SPD MLRs, $p(y = k \mid S \in S_{++}^n)$, are proportional to

$$(\alpha,\beta)-LEM:\exp\left[\langle \log(S) - \log(P), A \rangle^{(\alpha,\beta)}\right],\tag{16}$$

$$(\theta, \alpha, \beta) \text{-}AIM : \exp\left[\frac{1}{\theta} \langle \log(P^{-\frac{\theta}{2}} S^{\theta} P^{-\frac{\theta}{2}}), A \rangle^{(\alpha, \beta)}\right], \tag{17}$$

$$(\theta, \alpha, \beta) - EM : \exp\left[\frac{1}{\theta} \langle S^{\theta} - P^{\theta}, A \rangle^{(\alpha, \beta)}\right],$$
(18)

$$\theta \text{-}LCM : \exp\left[\frac{1}{\theta} \langle \lfloor \tilde{K} \rfloor - \lfloor \tilde{L} \rfloor + \left[\text{Dlog}(\mathbb{D}(\tilde{K})) - \text{Dlog}(\mathbb{D}(\tilde{L}))\right], \lfloor A \rfloor + \frac{1}{2}\mathbb{D}(A) \rangle\right], \quad (19)$$

$$2\theta - BWM : \exp\left[\frac{1}{4\theta} \langle (P^{2\theta} S^{2\theta})^{\frac{1}{2}} + (S^{2\theta} P^{2\theta})^{\frac{1}{2}} - 2P^{2\theta}, \mathcal{L}_{P^{2\theta}}(\bar{L}A\bar{L}^{\top}) \rangle \right], \tag{20}$$

where $A \in T_I S^n_{++} \setminus \{0\}$ is a symmetric matrix, $\log(\cdot)$ is the matrix logarithm, $\mathcal{L}_P(V)$ is the solution to the matrix linear system $\mathcal{L}_P[V]P + P\mathcal{L}_P[V] = V$, known as the Lyapunov operator, $\operatorname{Dlog}(\cdot)$ is the diagonal element-wise logarithm, $\lfloor \cdot \rfloor$ is the strictly lower part of a square matrix, and $\mathbb{D}(\cdot)$ is a diagonal matrix with diagonal elements of a square matrix. Besides, $\log_{*,P}$ is the differential maps at $P, \tilde{K} = \operatorname{Chol}(S^{\theta}), \tilde{L} = \operatorname{Chol}(P^{\theta}), and \tilde{L} = \operatorname{Chol}(P^{2\theta}).$

Theorem 5.2. [] The Lie MLR on SO(n) is given as $p(y = k \mid R \in SO(n)) \propto \langle \log(P_k^{\top}S), A_k \rangle, \qquad (22)$ where $P_k \in SO(n)$ and $A_k \in \mathfrak{so}(n)$.

Lie MLR

Figure 2: Conceptual illustration of SPD hyperplanes induced by five families of Riemannian metrics. The black dots denote the boundary of S^2_{++} .

Figure 3: Conceptual illustration of a Lie hyperplane. Each pair of antipodal black dots corresponds to a rotation matrix with an Euler angle of π , while the green dots denote a Lie hyperplane.

Table 3: Comparison of SPDNet with LogEig against SPD MLRs on the Radar dataset.

		(θ, α, β) -AIM	(heta, lpha, eta)	3)-EM	$ $ (α, β)	-LEM	2 <i>θ</i> -Β	WM	θ-L	СМ
Architectures	LogEig MLR	(1,1,0)	(1,1,0)	(1,1,1/8)	(1,1,0)	(1,1,1)	(0.5)	(0.25)	(1)	(0.5)
2-Block	92.88±1.05	94.53±0.95	94.24±0.55	94.93±0.60	93.55±1.21	95.64±0.83	92.22±0.83	94.99±0.47	93.49±1.25	94.59±0.8 2
5-Block	93.47±0.45	94.32±0.94	95.11±0.82	95.01±0.84	94.60±0.70	95.87±0.58	93.69±0.66	94.84±0.68	93.93±0.98	95.16±0.67

Table 4: Comparison of SPDNet with LogEig against SPD MLRs on the HDM05 dataset.

			(θ, α, β) -AIM	$(\theta, \alpha,$	β)-EM	(α, β) -LEM	2θ -BWM	θ-L	СМ
an	Architectures	LogEig MLR	(1,1,0)	(1,1,0)	(0.5,1.0,1/30)	(1,1,0)	(0.5)	(1)	(0.5)
	1-Block	57.42±1.31	58.07±0.64	66.32±0.63	71.65±0.88	56.97±0.61	70.24±0.92	63.84±1.31	65.66±0.73
etworks	2-Block	60.69±0.66	60.72±0.62	66.40±0.87	70.56±0.39	60.69±1.02	70.46±0.71	62.61±1.46	65.79±0.63
	3-Block	60.76±0.80	61.14±0.94	66.70±1.26	70.22 ± 0.81	60.28±0.91	70.20±0.91	62.33±2.15	65.71±0.75

Table 5: Inter-session experiments of TSMNet with different MLRs on the Hinss2021 dataset.

			3)-AIM	$(\theta,\alpha,\beta)\text{-}EM$	(α,β) -LEM	2θ -BWM	θ-L	СМ
Classifiers	LogEig MLR	(1,1,0)	(0.5,1,0.05)	(1,1,0)	(1,1,0)	(0.5)	(1)	(1.5)
Balanced Acc.	53.83±9.77	53.36±9.92	55.27±8.68	54.48±9.21	53.51±10.02	55.54±7.45	55.71±8.57	56.43±8.79

Table 6: Inter-subject experiments of TSMNet with different MLRs on the Hinss2021 dataset.

			3)-AIM	$(\theta, \alpha,$		(α, β) -LEM			θ-L	СМ
Classifiers	LogEig MLR	(1,1,0)	(1.5,1,0)	(1,1,0)	(1.5, 1, 1/20)	(1,1,0)	(0.5)	(0.75)	(1)	(0.5)
Balanced Acc.	49.68±7.88	50.65±8.13	51.15±7.83	50.02 ± 5.81	51.38±5.77	51.41±7.98	50.26±7.23	51.67±8.73	52.93±7.76	54.14±8.36

Riemannian Feedforward Network

Table 8: Comparison	of LogEig agair	nst SPD MLRs under the SPDGCN architecture.

Classifiers	Disease	e	Cora		Pubmed	
Chassiners	Mean±STD	Max	Mean±STD	Max	Mean±STD	Max
LogEig MLR	90.55 ± 4.83	96.85	78.04 ± 1.27	79.6	70.99 ± 5.12	77.6
(θ, α, β) -AIM	94.84 ± 2.27	98.43	79.79 ± 1.44	81.6	77.83 ± 1.08	80
(θ, α, β) -EM	90.87 ± 5.14	98.03	79.05 ± 1.23	81	78.16 ± 2.41	79.5
(α, β) -LEM	96.33 ± 2.19	98.82	79.89 ± 0.99	81.8	78.16 ± 2.41	79.5
2θ -BWM	91.93 ± 3.64	96.85	73.46 ± 2.18	77.7	73.22 ± 4.06	78.1
θ -LCM	93.01 ± 2.14	98.43	77.59 ± 1.20	80.1	74.46 ± 5.81	78.9

-

Riemannian GCN

Table 7: Comparison of LogEig against SPD MLRs under the RResNet architecture.

Dataset	s LogEigMLR	(θ, α, β) -AIM	(θ, α, β) -EM	(α,β) -LEM	2θ -BWM	θ -LCM
	558.17 ± 2.07 45.22 ± 1.23	60.23 ± 1.26 48.94 ± 0.68	71.89 ± 0.60 (↑ 13.72) 52.24 ± 1.25			65.76 ± 0.96 53.63 ± 0.95 († 8.41)

Table 9: Comparison of LogEig against SPD MLRs for direct classification.

Classifiers	Radar	HDM05	Hinss	\$2021
Classifiers	Kauai	HDM03	Inster-session	Inster-subject
LogEig MLR	91.93 ± 1.30	48.43 ± 1.25	39.76 ± 7.60	44.66 ± 7.17
(θ, α, β) -AIM	95.21 ± 0.81	49.17 ± 1.08	41.14 ± 7.26	45.89 ± 6.52
(θ, α, β) -EM	92.25 ± 1.20	61.60 ± 0.69	45.78 ± 8.51 († 6.02)	45.84 ± 4.75
(α, β) -LEM	95.09 ± 0.57	49.05 ± 0.91	40.88 ± 7.46	46.02 ± 5.96 († 1.36)
2θ -BWM	94.89 ± 0.41	66.77 ± 1.34 († 18.34)	44.84 ± 8.00	45.21 ± 7.44
θ -LCM	95.67 ± 0.61 († 3.74)	58.66 ± 0.51	43.17 ± 6.21	45.10 ± 6.20

Riemannian VS. Tangent MLR

RResNet

Results

			Hinss2021		
Methods	Radar	HDM05	Inter-session	Inter-subject	
Baseline	1.36	1.95	0.18	8.31	
AIM-MLR	1.75	31.64	0.38	13.3	
EM-MLR	1.34	3.91	0.19	8.23	
LEM-MLR	1.5	4.7	0.24	10.13	
BWM-MLR	1.75	33.14	0.38	13.84	
LCM-MLR	1.35	3.29	0.18	8.35	

Table 16	: Training	g efficiency	(s/epoch).
----------	------------	--------------	------------

Efficiency

-

_

Table 10: Results of LogEig MLR against Lie MLR under the LieNet architecture.

Classifiers	G3D		HDM05	
	Mean±STD	Max	Mean±STD	Max
LogEig MLR Lie MLR	87.91±0.90 89.13±1.7	89.73 92.12	76.92±1.27 78.24±1.03	79.11 80.25

LieNet

Thanks

Homepage

LinkedIn

