RMLR: Extending Multinomial Logistic Regression into General Geometries

Ziheng Chen1**, Yue Song**2**, Rui Wang**3**, Xiaojun Wu**3**, Nicu Sebe**¹

1 University of Trento, Italy 2 Caltech, USA 3 Jiangnan University, China

1

Applications of Riemannian Manifolds

Huang, Zhiwu, Jiqing Wu, and Luc Van Gool. "Manifold-valued image generation with wasserstein generative adversarial nets." AAAI, 2019. Chakraborty, Rudrasis, et al. "Manifoldnet: A deep neural network for manifold-valued data with applications." IEEE-TPAMI, 2020. Vemulapalli, Raviteja, et al. Human action recognition by representing 3D skeletons as points in a lie group. CVPR. 2014. Ju, Ce, et al. "Deep geodesic canonical correlation analysis for covariance-based neuroimaging data." ICLR, 2024. Brooks, Daniel, et al. "Deep learning and information geometry for drone micro-Doppler radar classification." RadarConf, 2020.

$$
\forall k \in \{1, ..., C\}, \quad p(y = k \mid x) \propto \exp(\langle a_k, x \rangle - b_k),
$$
\n
$$
p(y = k \mid x) \propto \exp(\text{sign}(\langle a_k, x - p_k \rangle) \|a_k\| d(x, H_{a_k, p_k})),
$$
\n
$$
H_{a_k, p_k} = \{x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0\},
$$
\nGeneral geometries

Eqs. (2) and (3) can be naturally extended into manifolds M by Riemannian operators:

$$
p(y = k \mid S) \propto \exp\left(\text{sign}(\langle \tilde{A}_k, \text{Log}_{P_k}(S) \rangle_{P_k}) \|\tilde{A}_k\|_{P_k}\tilde{d}(S, \tilde{H}_{\tilde{A}_k, P_k})\right),\tag{4}
$$

$$
\tilde{H}_{\tilde{A}_k, P_k} = \{ S \in \mathcal{M} : g_{P_k}(\text{Log}_{P_k} S, \tilde{A}_k) = 0 \},\tag{5}
$$

where $P_k \in \mathcal{M}, \tilde{A}_k \in T_{P_k} \mathcal{M} \setminus \{0\}, g_{P_k}$ is the Riemannian metric at P_k , and Log_{P_k} is the Riemannian logarithm at P_k . The margin distance is defined as an infimum:

$$
\tilde{d}(S, \tilde{H}_{\tilde{A}_k, P_k})) = \inf_{Q \in \tilde{H}_{\tilde{A}_k, P_k}} d(S, Q). \tag{6}
$$

• The key is to solve the margin distance, which could be non-convex on general geometries

Reformulation by Riemannian Trigonometry

$$
p(y = k | x) \propto \exp(\text{sign}(\langle a_k, x - p_k \rangle) ||a_k|| d(x, H_{a_k, p_k})),
$$

\n
$$
H_{a_k, p_k} = \{x \in \mathbb{R}^n : \langle a_k, x - p_k \rangle = 0\},
$$

\nReformulation
\n
$$
d(x, H_{a,p}) = \sin(\angle xpy^*) d(x, p), \quad \text{with } y^* = \underset{y \in H_{a,p} \setminus \{p\}}{\arg \max} (\cos \angle xpy).
$$
\n(7)
\nRiemannian trigonometry

Definition 3.1 (Riemannian Margin Distance). Let $\tilde{H}_{\tilde{A},P}$ be a Riemannian hyperplane defined in Eq. (5), and $S \in \mathcal{M}$. The Riemannian margin distance from S to $\tilde{H}_{\tilde{A},P}$ is defined as

$$
d(S, \tilde{H}_{\tilde{A}, P}) = \sin(\angle SPY^*)d(S, P),\tag{8}
$$

where $d(S, P)$ is the geodesic distance, and $Y^* = \text{argmax}(\cos \angle SPY)$ with $Y \in \tilde{H}_{\tilde{A}, P} \setminus \{P\}$. The initial velocities of geodesics define $\cos \angle SPY$:

$$
\cos \angle SPY = \frac{\langle \log_P Y, \log_P S \rangle_P}{\| \log_P Y \|_P, \| \log_P S \|_P},\tag{9}
$$

where $\langle \cdot, \cdot \rangle_P$ is the Riemannian metric at P, and $\| \cdot \|_P$ is the associated norm.

General Results

Theorem 3.2. \Box The Riemannian margin distance defined in Def. 3.1 is given as $d(S, \tilde{H}_{\tilde{A}, P}) = \frac{|\langle \operatorname{Log}_P S, \tilde{A} \rangle_P|}{\|\tilde{A}\|_P}.$ Riemannian Margin distance (10) Putting the Eq. (10) into Eq. (4) , we can a closed-form expression for Riemannian MLR. **Theorem 3.3** (RMLR). [\downarrow] Given a Riemannian manifold $\{M, g\}$, the Riemannian MLR induced by \overline{g} is Riemannian MLR $p(y = k \mid S \in \mathcal{M}) \propto \exp\left(\langle \text{Log}_{P_k} S, \tilde{A}_k \rangle_{P_k}\right),$ (11) where $P_k \in \mathcal{M}$, $\tilde{A}_k \in T_{P_k} \mathcal{M} \setminus \{0\}$, and Log is the Riemannian logarithm. $\tilde{A}_k = \Gamma_{\Omega \to P_k} A_k,$ (12) $\tilde{A}_k = L_{P_k \odot Q_0^{-1}*_{\alpha}Q} A_k,$ (13) **Optimization** where $Q \in \mathcal{M}$ is a fixed point, $A_k \in T_Q \mathcal{M} \setminus \{0\}$, Γ is the parallel transportation along geodesic connecting Q and P_k , and $L_{P_k \odot Q_0^{-1}*Q}$ denotes the differential map at Q of left translation $L_{P_k \odot Q_0$ Table 1: Several MLRs on different geometries are special cases of our MLR. Incorporated **MLR** Geometries Requirements by Our MLR Euclidean MLR $(Eq. (1))$ Euclidean geometry N/A \checkmark (App. C) Gyro SPD MLRs [50] AIM, LEM & LCM on S_{++}^n Gyro structures $\sqrt{$ (Rem. 4.3) **Generality** Gyro SPSD MLRs [51] SPSD product gyro spaces Gyro structures $\sqrt{(\text{App. D})}$ Pullback metrics from Flat SPD MLRs [16] (α, β) -LEM & (θ) -LCM on S_{++}^n $\sqrt{$ (Rem. 4.3) the Euclidean space

Ours

General Geometries

Riemannian logarithm

5

 N/A

Table 12: The associated Riemannian operators and properties of five basic metrics on SPD manifolds.

$$
\tilde{g}_P(V,W) = \frac{1}{\theta^2} g_{P^{\theta}}((\phi_{\theta})_{*,P}(V), (\phi_{\theta})_{*,P}(W)), \forall P \in \mathcal{S}_{++}^n, V, W \in T_P \mathcal{S}_{++}^n,\tag{14}
$$

Figure 1: Illustration on the deformation (left) and Venn diagram (right) of metrics on SPD manifolds, where IEM, SREM, and $\frac{1}{4}$ PAM denotes Inverse Euclidean Metric, Square Root Euclidean Metric, and Polar Affine Metric scaled by $1/4$.

Table 2: Properties of deformed metrics on SPD manifolds ($\theta \neq 0$ and $\min(\alpha, \alpha + n\beta) > 0$).

SPD MLR

Theorem 4.2 (SPD MLRs). [1] By abuse of notation, we omit the subscripts k of A_k and P_k . Given SPD feature S, the SPD MLRs, $p(y = k | S \in S_{++}^n)$, are proportional to

$$
(\alpha, \beta)\text{-}\mathit{LEM}: \exp\left[\langle\log(S) - \log(P), A\rangle^{(\alpha, \beta)}\right],\tag{16}
$$

$$
(\theta, \alpha, \beta)\text{-}AIM: \exp\left[\frac{1}{\theta}\langle\log(P^{-\frac{\theta}{2}}S^{\theta}P^{-\frac{\theta}{2}}), A\rangle^{(\alpha, \beta)}\right],\tag{17}
$$

$$
(\theta, \alpha, \beta) \text{-} \mathbf{EM} : \exp\left[\frac{1}{\theta} \langle S^{\theta} - P^{\theta}, A \rangle^{(\alpha, \beta)}\right],\tag{18}
$$

$$
\theta \text{-LCM} : \exp\left[\frac{1}{\theta} \langle [\tilde{K}] - [\tilde{L}] + \left[\text{Dlog}(\mathbb{D}(\tilde{K})) - \text{Dlog}(\mathbb{D}(\tilde{L}))\right], \lfloor A \rfloor + \frac{1}{2} \mathbb{D}(A) \rangle\right], \quad (19)
$$

$$
2\theta \cdot BWM : \exp\left[\frac{1}{4\theta} \langle (P^{2\theta} S^{2\theta})^{\frac{1}{2}} + (S^{2\theta} P^{2\theta})^{\frac{1}{2}} - 2P^{2\theta}, \mathcal{L}_{P^{2\theta}}(\bar{L} A \bar{L}^{\top}) \rangle\right],
$$
 (20)

where $A \in T_I S_{++}^n \setminus \{0\}$ is a symmetric matrix, $\log(\cdot)$ is the matrix logarithm, $\mathcal{L}_P(V)$ is the solution to the matrix linear system $\mathcal{L}_P[V]P + P\mathcal{L}_P[V] = V$, known as the Lyapunov operator, $D\text{log}(\cdot)$ is the diagonal element-wise logarithm, $|\cdot|$ is the strictly lower part of a square matrix, and $\mathbb{D}(\cdot)$ is a diagonal matrix with diagonal elements of a square matrix. Besides, \log_{*P} is the differential maps at P, $\tilde{K} = \text{Chol}(S^{\theta})$, $\tilde{L} = \text{Chol}(P^{\theta})$, and $\bar{L} = \text{Chol}(P^{2\theta})$.

Theorem 5.2. \Box The Lie MLR on $SO(n)$ is given as $p(y = k \mid R \in SO(n)) \propto \langle \log(P_k^{\top} S), A_k \rangle,$ (22) where $P_k \in \text{SO}(n)$ and $A_k \in \mathfrak{so}(n)$.

Lie MLR

Figure 2: Conceptual illustration of SPD hyperplanes induced by five families of Riemannian metrics. The black dots denote the boundary of S_{++}^2 .

Figure 3: Conceptual illustration of a Lie hyperplane. Each pair of antipodal black dots corresponds to a rotation matrix with an Euler angle of π , while the green dots denote a Lie hyperplane.

Table 3: Comparison of SPDNet with LogEig against SPD MLRs on the Radar dataset.

Table 4: Comparison of SPDNet with LogEig against SPD MLRs on the HDM05 dataset.

Table 5: Inter-session experiments of TSMNet with different MLRs on the Hinss2021 dataset.

Table 6: Inter-subject experiments of TSMNet with different MLRs on the Hinss2021 dataset.

Riemann Feedforward N

Riemannian GCN

Table 7: Comparison of LogEig against SPD MLRs under the RResNet architecture.

		Datasets LogEigMLR (θ, α, β) -AIM	(θ, α, β) -EM	(α, β) -LEM	2θ -BWM	θ -LCM
NTU60 -	$HDM05$ 58.17 \pm 2.07	60.23 ± 1.26 45.22 ± 1.23 48.94 ± 0.68	71.89 ± 0.60 (\uparrow 13.72) 59.44 ± 0.87 69.85 ± 0.23 52.24 ± 1.25			65.76 ± 0.96 46.99 ± 0.41 50.56 ± 0.59 53.63 ± 0.95 († 8.41)

Table 9: Comparison of LogEig against SPD MLRs for direct classification.

Riemannian VS. Tangent MLR

RResNet

Results

Table 10: Results of LogEig MLR against Lie MLR under the LieNet architecture.

Efficiency

 $\overline{}$

 $\qquad \qquad$

Thanks

Homepage LinkedIn

