

DisenGCD: A Meta Multigraph-assisted Disentangled Graph Learning Framework for Cognitive Diagnosis

Presenter: Shangshang Yang

Background - CD task

Cognitive Diagnosis Task

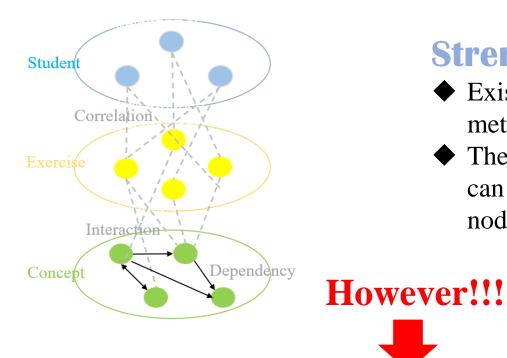
Exercise	Concept	Response	
e_1	Α	×	Cognitive Diagnosis
e_2	В	\checkmark	
e_3	С	?	Legend
e_4	D	?	A : AdditionD : DivisionB : SubstractionE : Derivation
e_5	Ε	?	C : Multiplication

Cognitive diagnosis aims at evaluating students' proficiency levels across various knowledge concepts through exercises.

Existing approaches (based on neural network and graph neural network) take CD task as a prediction task, and judge the knowledge of students by predicting their answers.

•Motivation

The graph neural network of current graph cognitive diagnosis model

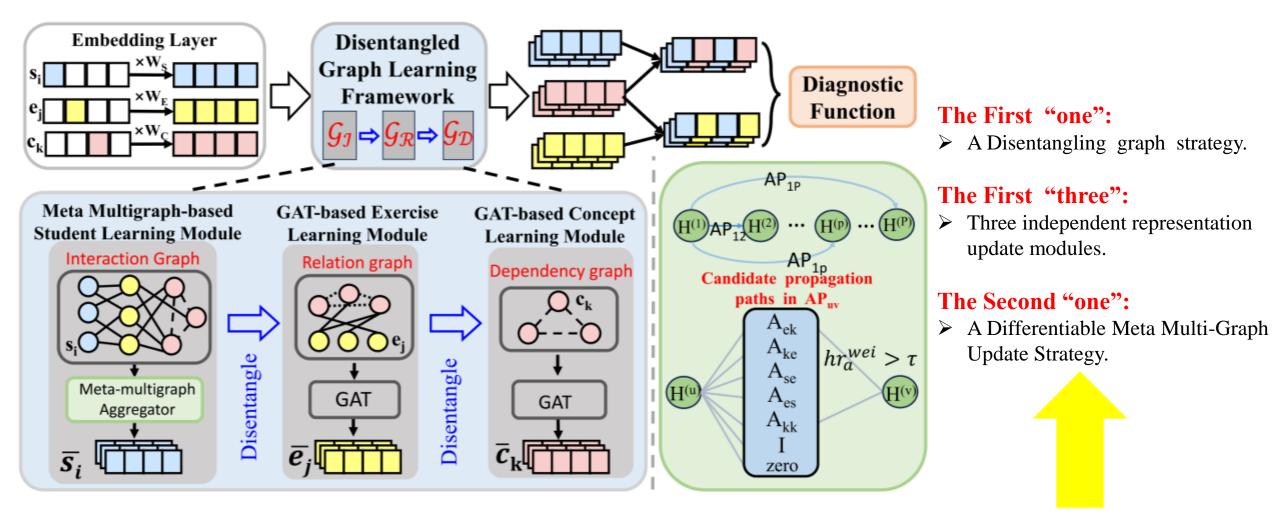


Strengths:

- Existing graph learning-based cognitive diagnosis (CD) methods have made relatively good results.
- The representation of students, exercises and concepts can learn higher-order semantic information of neighbor nodes through graph neural networks.

- Exercise and concept representations be learned poorly, failing to provide high robustness against noise in students' interactions.
- Iower-order exercise latent representations obtained in shallow layers are not well explored when learning the student representation.

• Overall Framework



How to overcome the shortcomings of the previous work? ——1-3-1 Strategies!!!

• Fomule

•Representation learning

()The Meta Multigraph-based Student Learning Module

$$\mathbf{H}^{(p)} = \sum \{ f(A\hat{P}_{up}, \mathbf{H}^{(u)}) || \ 1 \le u$$

(2)The GAT-based Exercise Learning Module

$$\begin{aligned} \mathbf{e}_{j}^{R(l)} &= \sum_{k \in N_{e_{j}}} \alpha_{j(k)}^{R(l)} \mathbf{c}_{k}^{R(l-1)} + \mathbf{e}_{j}^{R(l-1)}, \\ \mathbf{c}_{k}^{R(l)} &= \sum_{j \in N_{c_{k}}^{ec}} \alpha_{k(j)}^{R(l)} \mathbf{e}_{j}^{R(l-1)} + \sum_{m \in N_{c_{k}}^{cc}} \alpha_{\hat{k}(m)}^{R(l)} \mathbf{c}_{m}^{R(l-1)} + \mathbf{c}_{k}^{R(l-1)}. \end{aligned}$$

③The GAT-based Concept Learning Module

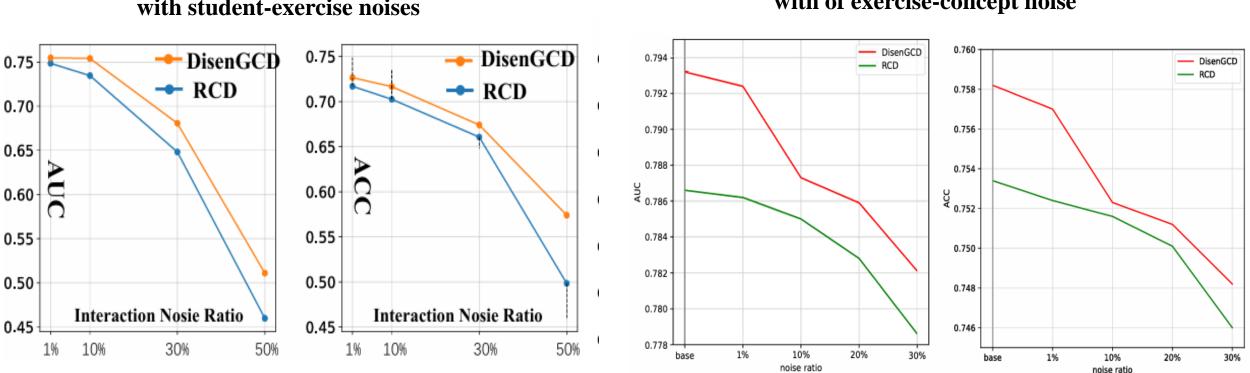
$$\mathbf{c}_{k}^{D(l)} = \sum_{m \in N_{c_{k}}^{cc}} \alpha_{\underline{\hat{k}}(m)}^{D(\overline{l})} \mathbf{c}_{m}^{D(l-1)} + \mathbf{c}_{k}^{D(l-1)}.$$

The Diagnosis Module

$$\mathbf{h}_{simi} = \sigma(F_{simi}(\mathbf{h}_{si} \cdot \mathbf{h}_{ej})), \mathbf{h}_{si} = F_{si}(\overline{\mathbf{S}_i} + \overline{\mathbf{C}_k}), \mathbf{h}_{ej} = F_{ej}(\overline{\mathbf{E}_j} + \overline{\mathbf{C}_k})$$
$$\hat{r_{ij}} = (\sum Q_k \cdot \mathbf{h}_{simi}) / \sum Q_k$$

Table 1 Overall Performance Comparison in terms of ACC, RMSE and AUC

Datatset	Ratio	40%/10%/50%		50%/10%/40%		60%/10%/30%			70%/10%/20%				
ASSISTments	Method	$ ACC\uparrow$	RMSE↓	AUC↑	ACC↑	RMSE↓	AUC↑	$ ACC\uparrow$	RMSE↓	AUC↑	ACC↑	RMSE↓	AUC↑
	DINA	0.6388	0.4931	0.6874	0.6503	0.4862	0.4978	0.6573	0.4820	0.7071	0.6623	0.4787	0.7126
	MIRT	0.6954	0.4740	0.7254	0.7015	0.4689	0.7358	0.7096	0.4624	0.7469	0.7110	0.4617	0.7514
	NCD	0.7070	0.4443	0.7374	0.7142	0.4370	0.7423	0.7237	0.4365	0.7552	0.7285	0.4298	0.7603
	ECD	0.7154	0.4373	0.7362	0.7130	0.4373	0.7432	0.7274	0.4329	0.7543	0.7297	0.4296	0.7599
	RCD	0.7232	0.4311	0.7546	0.7253	0.4285	0.7605	0.7291	0.4262	0.7663	0.7296	0.4245	0.7687
	DisenGCD	0.7276	0.4255	0.7635	0.7287	0.4238	0.7677	0.7335	0.4219	0.7723	0.7334	0.4209	0.7746
Math	DINA	0.6691	0.4715	0.7117	0.6745	0.4674	0.7199	0.6813	0.4633	0.7222	0.6812	0.4635	0.7231
	MIRT	0.7229	0.4335	0.7427	0.7227	0.4299	0.7497	0.7279	0.4291	0.7479	0.7340	0.4256	0.7542
	NCD	0.7394	0.4157	0.7604	0.7424	0.4119	0.7660	0.7418	0.4109	0.7706	0.7447	0.4084	0.7756
	ECD	0.7335	0.4154	0.7615	0.7424	0.413	0.7657	0.7434	0.4114	0.7693	0.7484	0.4087	0.7761
	RCD	0.7446	0.41	0.7724	0.7489	0.4074	0.7751	0.7501	0.4078	0.7806	0.7534	0.4034	0.7866
	DisenGCD	0.7479	0.4076	0.7802	0.7513	0.4052	0.7832	0.7527	0.4039	0.7867	0.7582	0.4004	0.7932



Noise was added to the student-problem interaction(Fig 1) and the problem - concept interaction(Fig 2), respectively. The results of DisenGCD are consistently better than those of RCD.

Fig 1: Performance of RCD and DisenGCD with student-exercise noises

RCD and DisenGCD Fig 2:Po ercise noises

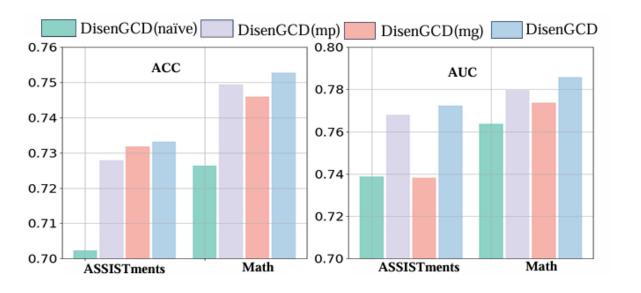
Fig 2:Performance of RCD and DisenGCD with of exercise-concept noise

• Experiments - Ablation Experiment

Table 2:Performance of DisenGCD, RCD, and its four variants

Metric	RCD	DisenGCD(I)	DisenGCD (Is+Rec)	DisenGCD (Ise+Rc)	DisenGCD (Isc+Re)	DisenGCD
ACC↑	0.7291	0.7331	0.7321	0.7301	0.7333	0.7335
RMSE↓	0.4262	0.4235	0.4259	0.4235	0.4231	0.4219
AUC↑	0.7663	0.7678	0.7701	0.7678	0.7685	0.7723

Fig 3:Performance of four variants



The followings' effectiveness can be validated:

- ➤ The need for disentangling strategies.
- The Excellence of Meta Multi-graph Aggregation.

Thanks! !