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In federated learning a model is trained in 
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Key Question: When is it possible to exactly recover the client data?
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Low Rankness of Gradient Updates
Assume linear layer with ReLU activation: 
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Low Rankness of Gradient Updates
Assume linear layer with ReLU activation: 

Key Observation: The gradient of W is not full rank for                                  .                                 

The gradient of the linear layer can be written in the form: 



Sparse Gradients of ReLU Activations 
Assume linear layer with ReLU activation: 

Gradients of ReLU activations:
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Sparse Gradients of ReLU Activations 
Assume linear layer with ReLU activation: 

Key Observation: The ReLU activation makes gradient of Z sparse                                 

Gradients of ReLU activations:

0/1 mask based on the sign of Z



Gradient Decomposition 
Use SVD to create low-rank decomposition of the gradient of W:



Gradient Decomposition 

Key Observation: The Low-Rankness simplifies the problem from N X B to B X B                                 

Use SVD to create low-rank decomposition of the gradient of W:

We show that under mild assumptions: there exists an unique                           s.t.:



Exploiting Gradient Sparsity (Example)
Assume that first 3 neurons are not activated for some input x in a batch with B=3:
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Exploiting Gradient Sparsity (Example)
Assume that first 3 neurons are not activated for some input x in a batch with B=3:

If we also assume that                                        , we have: 



Theorem: For randomly initialized networks with probability approximately  
a vector q’ obtained that way is a column of Q(up to scale).

Exploiting Gradient Sparsity

Key Idea: Sample random submatrices of L and obtain the respective q                      



Theorem: For randomly initialized networks with probability approximately  
a vector q’ obtained that way is a column of Q(up to scale).

Exploiting Gradient Sparsity

Key Idea: Sample random submatrices of L and obtain the respective q’                      

To discard bad vectors q’ we compute the sparsity of their associated gradient:



Let                      , where        is unknown. Then one can recover       by:

Recovering Scale

Key Observation: The gradient of the bias b can be used to recover scale.

with



Experimental Results



We run our experiments on 6 layers FCNN with batch size B=20 on image data:

Main Results 
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Main Results - Visualisation
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We also work with tabular data where FCNNs are common:

Tabular Data Results 
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We first recover the input features to the linear layers of the CNN and then 
execute a combination of feature inversion and gradient inversion attack:

Convolutional Network Results 
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