

NeurIPS 2024 Spotlight:

EMR-Merging:

Tuning-Free High-Performance Model Merging

Chenyu Huang^{1†}, Peng Ye^{1,3†}, Tao Chen^{1*}, Tong He², Xiangyu Yue³, Wanli Ouyang³

¹ Fudan University; ² Shanghai AI Laboratory;

³ The Chinese University of Hong Kong

[†]Equal Contribution; ^{*} Corresponding Author: eetchen@fudan.edu.cn

Model Merging:

Combining weights instead of additional training to render a model multi-task capabilities.

- Reducing **storage** and **deployment** cost.
- No additional training or training data.

Current Problem 1:

• Significant performance degradation

Current Problem 1:

• Significant performance degradation

Current Problem 2:

Additional Tuning **Others: Tuning by training data** Multi-Task Learning **Tuning by validation data Hyper-parameter tuning** Task Arithmetic Task Arithmetic **Ties-Merging** Ties-Merging RegMean DARE Fisher-Merging **Tuning by additional training** Multi-Task Learning AdaMerging

Current Problem 2:

2. Motivation

- Finding #1: A single model weight is hard to simulate all the models' performance due to weight interference.
- Finding #2: Focusing on model weights instead of data may avoid additional tuning.

Modifying the merging paradigm:

- Decoupling model merging into 1) <u>a unified model</u> and several 2) <u>task-specific modules</u>.
 - ➢ Original: $W_M = \mathcal{M}\left([W_1..W_N]\right)$
 - × Severe weight interference
 - × Additional tuning needed

- New Paradigm: $W_{uni}, [E_1..E_N] = \mathcal{M}'([W_1..W_N])$
 - ✓ Resolving weight interference
 - \checkmark Needs no tuning

3. Method: EMR-Merging

Merging Procedure

Elect the unified task vector

4

3. Method: EMR-Merging

Inference Procedure

Apply the specific modulators before inference on a task

Algorithm Flow

Algorithm 1 EMR-MERGING Procedure
Input: Finetuned models W_{1N} , pretrained model W_{pre}
Output: Unified task vector τ_{uni} , task-specific masks
M_{1N} , task-specific rescalers λ_{1N}
for <i>t in</i> 1,, <i>N</i> do
Create task vectors.
$ \tau_t = W_t - W_{pre}$
end
Step 1: Elect the unified task vector.
$\gamma_{uni} = sgn(\sum_{t=1}^{n} \tau_t)$
$\epsilon_{uni} = zeros(d)$
for <i>t in</i> 1,, <i>N</i> do
for <i>p in</i> 1,, <i>d</i> do
$ \left \begin{array}{c} \text{if } \gamma_{uni}^p \cdot \tau_t^p > 0 \text{ then} \\ \mid \epsilon_{uni}^p = max\left(\epsilon_{uni}^p, abs\left(\gamma_{uni}^p\right)\right) \\ \text{end} \end{array} \right $
end
end
$\tau_{uni} = \gamma_{uni} \odot \epsilon_{uni}.$
for <i>t in</i> 1,, <i>N</i> do
Step 2: Generate task-specific masks.
for <i>p in</i> 1,, <i>d</i> do
$ M_t^p = bool(\tau_t^p \cdot \tau_{uni}^p > 0)$
end
Step 3: Generate task-specific rescalers.
$\lambda_t = rac{sum(abs(au_t))}{sum(abs(M_t \odot au_{uni}))}$
end

3. Method: EMR-Merging

Charastics:

 \checkmark

- vision, language, PEFT, and multi-modal models
- ✓ High applicability

Tuning-Free

✓ Good performance.

Methods	Training-Data Tuning	Valid-Da inputs	ata Tuning labels	Tuning by Training			
Weight Averaging	×	×	×	×			
Traditional MTL	✓	×	×	√			
Fisher-Merging [46] RegMean [33]	× ×		× ×	× ×			
Task Arithmetic [30] Ties-Merging [84] AdaMerging [85]	× × ×		√ √ ×	× × √			
EMR-Merging(Ours)	×	×	×	×			
	° ° CLowest Cost						

4. Experimental Results

Merging Vision Models:

Results on merging eight ViT-B/32 models

Methods	Averaging	Fisher	RegMean	Task Arithmetic	Ties-Merging	AdaMerging	EMR-Merging(Ours)
Performance	65.8	68.3	71.8	70.1	73.6	81.1	88.7 (†7.6)

Results on merging eight ViT-L/14 models

Methods	Averaging	Fisher	RegMean	Task Arithmetic	Ties-Merging	AdaMerging	EMR-Merging(Ours)
Performance	79.6	82.2	83.7	84.5	86.0	91.0	93.7 (†2.7)

Results on merging 30 ViT-B/16 models

Methods	Averaging	RegMean	Task Arithmetic	Ties-Merging	AdaMerging	EMR-Merging(Ours)
Performance	42.5	68.1	48.9	37.5	60.3	89.5 (†21.4)

Reproduce our experiments: <u>https://github.com/harveyhuang18/EMR_Merging</u>

4. Experimental Results

Merging Language Models:

Results on merging eight RoBERTa models

Methods	Averaging	RegMean	Task Arithmetic	Ties-Merging	EMR-Merging(Ours)
Performance	51.3	70.0	66.7	64.0	80.2 (†10.2)

Results on merging seven GPT-2 models

Methods	Averaging	Fisher	RegMean	Task Arithmetic	Ties-Merging	EMR-Merging(Ours)
Performance	56.1	58.7	68.8	70.0	70.0	80.4 (†10.4)

Results on merging eleven PEFT (IA)³ models

Methods	Averaging	Fisher	RegMean	Task Arithmetic	Ties-Merging	EMR-Merging(Ours)
Performance	58.0	62.2	58	63.9	66.4	67.1 (†0.7)

Reproduce our experiments: <u>https://github.com/harveyhuang18/EMR_Merging</u>

4. Experimental Results

Merging Vision-Language Models:

Results on merging five BEiT-3 models

Methods Task	COCO-Retrieval	COCO-Captioning				ImageNet-1k Classification	NLVR2	VQAv2
Metric	Accuracy(\uparrow)	BLEU4(↑)	CIDEr(↑)	METEOR(↑)	ROUGE-L(↑)	Accuracy(↑)	Accuracy(\uparrow)	Accuracy(\uparrow)
Individual	0.8456	0.394	1.337	0.311	0.601	0.8537	0.7765	0.8439
Weight Averaging	0.1893	0.031	0.001	0.115	0.159	0.6771	0.2800	0.6285
Task Arithmetic [30]	0.3177	0.033	0.000	0.118	0.176	0.7081	0.3809	0.6933
Ties-Merging [84]	0.3929	0.029	0.001	0.108	0.167	0.6978	0.3206	0.6717
EMR-MERGING(Our	s) 0.7946	0.289	1.060	0.272	0.534	0.7742	0.7475	0.7211

Reproduce our experiments: <u>https://github.com/harveyhuang18/EMR_Merging</u>

5. Visualization Results

Grad-CAM Visualization

5. Visualization Results

Thanks!

E-mail: cyhuang24@m.fudan.edu.cn