

Towards Universal Mesh Movement Networks

NeurIPS 2024 (Spotlight)

Mingrui Zhang¹, Chunyang Wang¹, Stephan C. Kramer¹, Joseph G. Wallwork², Siyi Li¹, Jiancheng Liu³, Xiang Chen⁴, Matthew D. Piggott¹

> ¹Imperial College London, ²University of Cambridge, ³Michigan State University, ⁴Huawei, Noah's Ark Lab

Numerical Simulation

Numerical Physical Simulation | Physical knowledge (e.g., Governing Equation) -> Solutions

Pros: Physical plausible, generalizable

Cons: Computational expensive, discretization errors, undiscovered physics

photograph from NASA, 2001; STS-100

Numerical Simulation

Numerical Physical Simulation | Physical knowledge (e.g., Governing Equation) -> Solutions

Pros: Physical plausible, generalizable

Cons: Computational expensive, discretization errors, undiscovered physics

Mesh Adaptation

• Mesh adaptation are techniques for distributing mesh according to the requirements of numerical accuracy. Two main categories of mesh adaptation techniques can be identified: h-adaptation and radaptation.

h-adaptation radaptation

Corbin Foucart, Aaron Charous, and Pierre F.J. Lermusiaux. Deep reinforcement learning for adaptive mesh refinement. Journal of Computational Physics, 491:112381, 2023.

Mesh Movement

• A monitor function m over the spatial domain is used to specify the desired mesh density. Finding a mapping so that m is equidistributed over the adapted (i.e., physical) mesh.

$$
m(x) det(J) = const. \qquad J = \frac{\partial f(\xi)}{\partial x}
$$

Goal $x = f(\xi)$

Monitors

• A monitor function m over the spatial domain is used to specify the desired mesh density. Finding a mapping so that m is equidistributed over the adapted (i.e., physical) mesh.

Monitor Function

Solution

Monitors

Monitors

• A monitor function m over the spatial domain is used to specify the desired mesh density. Finding a mapping so that m is equidistributed over the adapted (i.e., physical) mesh.

$$
m(\mathbf{x}) = 1 + \max\left(\alpha \frac{\|H(u)\|}{\max\|H(u)\|}, \beta \frac{\|G(u)\|}{\max\|G(u)\|}\right)
$$

e.g., Combined gradient and hessian with smoothing

Solution **Monitors**

Adapted mesh

Mesh tangling

• Mesh tangling occurs when elements of a computational mesh overlap or intersect, i.e., negative Jacobians or inverted elements.

Mesh tangling leads divergence in simulations!

Josh Danczyk, Krishnan Suresh,Finite element analysis over tangled simplicial meshes: Theory and implementation, Finite Elements in Analysis and Design, Volumes 70–71,2013

Monge-Ampère Mesh Movement

• By using concepts from **optimal transport theory** , the problem can be constrained to have a unique solution, with the deformation of the map expressed as the gradient of a scalar potential ϕ , i.e., $x(\xi) = \xi + \nabla_{\xi} \phi(\xi)$:

$$
m(x) \det(J) = const.
$$
 $J = \frac{\partial f(\xi)}{\partial x}$

Monge-Ampère Mesh Movement

• **Pros**

• Output a non-tangled adapted mesh which satisfies equal-distributed theory

• **Cons**

- Computational expensive: we need to solve an additional non-linear PDE!
- Complex geometry: Monge-Ampère fails on scenarios with complex geometries.

MA PDE solver is too expensive!

Learning based mesh adaptation

- Goals:
	- **Mesh adaptor** is efficient
	- **Adapted mesh** is non-tangled
	- **Geometry** can be complex (e.g., non-convex)

Limitation of Existing Work

• Require to re-train the model from scratch given a new problem or scenario

Limitation of Existing Work

• Can we train once and and zero-shot apply the trained model to other problems or scenarios?

Key Intuition

• **Decouple the inputs from the PDEs, use monitors instead of PDE solutions**

Key Intuition

• **Decouple the inputs from the PDEs, use monitors instead of PDE solutions**

PDE-independent training

• Randomly generating generic fields as monitors for PDE-independent training

$$
u = \sum_{k=1}^{N} \exp \left(\frac{(x - \mu_x)^2}{\sigma_x^2} + \frac{(y - \mu_y)^2}{\sigma_y^2} \right)
$$

Networks

Results on Swirl

Results on Swirl

Adapted Mesh Adapted Mesh (M2N)

(UM2N)

Flow Past a Cylinder

Results on Flow Past Cylinder

Results on Tsunami Simulation

Tohoku Tsunami Simulation

Adapted Mesh (UM2N)

Results on Tsunami Simulation

More Results

Thanks!

<https://erizmr.github.io/UM2N/>