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ProcedurE Learning

I can do 
that too!
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What is Procedure Learning (PL)?
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Ø Given multiple unlabeled videos of the same task,
Ø Cluster the subtasks (key-steps) together in an embedding space
Ø Determine their sequential ordering (proper syntax, but for videos)
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Motivation
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Nearest Frame RetrievalQuery

Fill the measuring cup with water

Assemble the tent supports

Ø Unsupervised Robotic Learning
Ø Nearest Frame Retrieval
Ø Anomaly detection ensures the proper sequence of tasks, such as jacking up a car before 

accessing the wheel during a tire change



Background: Optimal Transport (OT)
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Goal: optimal alignment between two distributions 

https://www.pragmatic.ml/sparse-sinkhorn-attention/


Background: Optimal Transport (OT)
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Global Cost, 
<T, D>

https://www.pragmatic.ml/sparse-sinkhorn-attention/
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Sub-optimal Transport Plan
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Objective: minimize <T,D>
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Proposed Approach: Optimal Transport (OT)
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𝑙!
" α, β, 𝑫 = 𝑻!, 𝑫 • 𝑙!

" − 𝑆𝑖𝑛𝑘ℎ𝑜𝑟𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
• 𝜶# = ⁄1 𝑁 ; 𝜷$ = ⁄1 𝑀
• 𝑫 − 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔: 𝑑 𝒙# , 𝒚$ = |𝒙# − 𝒚$|
• 𝑻 − 𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑚𝑎𝑡𝑟𝑖𝑥: 𝑡#$ ∝ 𝑝𝑟𝑜𝑏𝑎𝑏𝑙𝑖𝑡𝑦 𝒙# ⇔ 𝒚$
• 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛, ℎ 𝑻 − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝑜𝑓 𝑻 = −∑#%&' ∑$%&( 𝑡#$ log 𝑡#$

𝑻! = arg min
#∈% &,(

𝑻,𝑫 −
1
λ
ℎ 𝑻



Priors
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ØTo address these variations:
Ø Optimality Prior (handles non-monotonicity, speed variations etc.)
Ø Temporal Prior (promotes temporal coherence)
Ø Virtual frame in T (to manage background frames)

𝑸) 𝑖, 𝑗 =
1
2𝑏
𝑒*

+! #,$
- , 𝑑) 𝑖, 𝑗 =

𝑖/𝑁 − 𝑖)/𝑁 + 𝑗/𝑀 − 𝑗)/𝑀
2 1/𝑁. + 1/𝑀.

𝑸/ 𝑖, 𝑗 =
1
2𝑏 𝑒

* +" #,$
- , 𝑑/ 𝑖, 𝑗 =

𝑖/𝑁 − 𝑗/𝑀
1/𝑁. + 1/𝑀.

𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 𝑃𝑟𝑖𝑜𝑟: 𝑸 𝑖, 𝑗 = ϕ𝑸/ 𝑖, 𝑗 + 1 − ϕ 𝑸) 𝑖, 𝑗

i and j are temporal frame idx of 
Video 2 and Video 1, respectively  

2-D depiction

1-D illustration



Differentiable Formulation
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𝑀! "𝑻 = %
"#$

%&$

%
'#$

(&$
𝑡"'

1
2𝑑) + 1

; 𝑑) =
𝑖 − 𝑖!
𝑁 + 1

*

+
𝑗 − 𝑗!
𝑀 + 1

*

Regularizations on 
Optimal Transport 

Matrix ("𝑻)
𝑀+ "𝑻 =%

"#$

%&$
%

'#$

(&$ 𝑡"'
𝑖

𝑁 + 1 −
𝑗

𝑀 + 1
*
+ 1

𝑀 "𝑻 = ϕ𝑀+ "𝑻 + 1 − ϕ 𝑀! "𝑻 .

Inverse Difference Moment 
(IDM) Regularization

𝑀 "𝑻 ≥ ξ$Desired: 𝐾𝐿 "𝑻 ∥ "𝑸 ≤ ξ*…. (i) …. (ii)

Using Lagrangian Duality: 𝑙!,,!-
# 𝑋, 𝑌 ≔ &𝑻!,,!-, 𝑫 ,

&𝑻!,,!- = arg min
$%∈' (,)

&𝑻!,,!-, 𝑫 − λ*𝑀 &𝑻 + λ+KL &𝑻 ∥ &𝑸

𝑙.! ,."
0 − Regularized Sinkhorn distance

* Derivations are provided in the paper



Loss Functions
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𝐼 𝑿 =%
"#$

%&$
%

'#$

(&$
1 −𝒩 𝑖, 𝑗 γ 𝑖, 𝑗 max 0, λ1 − 𝑑 𝑖, 𝑗 +𝒩 𝑖, 𝑗

𝑑 𝑖, 𝑗
γ 𝑖, 𝑗

𝑏𝑒𝑠𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

temperature
⋅
1
𝑁
%
"#$

%

𝒙" − 𝒚2#$%& "
* +

1
𝑀
%
'#$

(

𝒚' − 𝒙3#$%& '
*

𝑤𝑜𝑟𝑠𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

temperature
⋅
1
𝑁
%
"#$

%

𝒙" − 𝒚2'()%& "
*
+
1
𝑀
%
'#$

(

𝒚' − 𝒙3'()%& '
*

𝑙𝑜𝑠𝑠_𝑖𝑛𝑡𝑒𝑟 = 𝐹45!66_89+5!:3
𝑏𝑒𝑠𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑤𝑜𝑟𝑠𝑡_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , 01

𝐿;<=> 𝑋, 𝑌 = 𝑐$ ∗ 𝑙.! ,."
0 𝑋, 𝑌 + 𝑐* ∗ 𝐼 𝑋 + 𝐼 𝑌 + 𝑐1 ∗ loss_inter

Intra-Video Contrastive-Inverse 
Difference Moment (C-IDM) Loss 

Inter-Video Contrastive Loss 

Overall OPEL Loss:

γ 𝑖, 𝑗 = 𝑖 − 𝑗 * + 1; 𝑑 𝑖, 𝑗 = 𝒙" − 𝒙' ; 𝒩 𝑖, 𝑗 = 1, if 𝑖 − 𝑗 ≤ δ and 0 otherwise

Clustering done using multi-level graph-cut segmentation. Clusters are sequenced by averaging normalized times of frames in each cluster 
and ordering them to outline the video's key-step sequence.



Clustering and Ordering

• Multi-label graphcut segmentation
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Quantitative Results
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First-person (Egocentric) Videos

22.4% (IoU) and 26.9% (F1) 
average improvement 

compared to current SOTA

Third-person (TP) Videos

TP Views of CMU-MMAC

46.2% (F1) average 
improvement compared to 

current SOTA• SOTA on all benchmarks



Qualitative Results
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• Higher overlap with Ground Truth 
compared to State-of-the-art

• Accurate alignment despite temporal 
variations



Additional Results
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Better results than Multi-modal SOTA

Effectiveness of LOPEL

• OPEL loss performs better compared to other existing



Ablation Studies
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Impact of each term of LOPEL

Clustering Algorithms

Number of clusters

Distribution of Priors

• OT+graphcut segmentation (OPEL) performs best

• All terms enhance performance – priors ~5pts, contrastive losses ~ 3.5 pts



Summary
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Ø Contributions –
o A novel OT-guided unsupervised procedure learning framework
o SOTA results on all benchmarks (1st person as well as 3rd person)

Ø Limitation – assumption that subjects utilize similar objects for identical key-
steps

Ø Future work – integration of additional contextual and semantic features
within the OT framework, extending this framework to other domains of video
understanding
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YOU!

Questions?


