

(FL)²: Overcoming Few Labels in Federated Semi-Supervised Learning

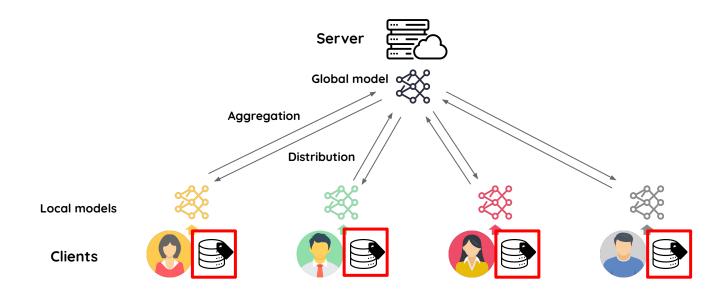
Seungjoo Lee

Thanh-Long V. Le

Jaemin Shin

Sung-Ju Lee

Unrealistic Assumption in Federated Learning (FL)



- FL collaboratively trains accurate global model while keeping clients' privacy-sensitive data unshared
- Most FL studies assume that clients have labeled data
 - **Unrealistic assumption** in practical scenarios
 - Clients are **reluctant** or **lack of motivation** to label data
 - Certain data types require **domain expertise** (e.g., medical data, sensor data)

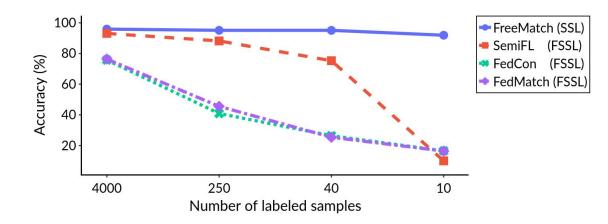
Federated Semi-Supervised Learning (FSSL)



- **Labels-at-server** scenario
 - Server owns small labeled dataset
 - Clients remain **unlabeled**

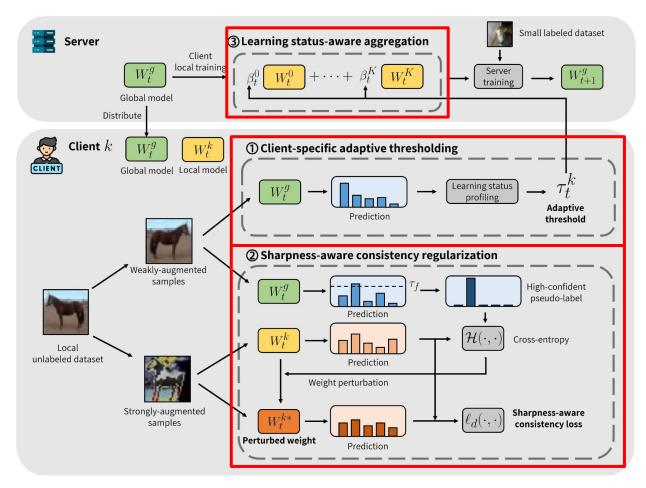
Limitation of Previous FSSL Studies

Test accuracy on CIFAR10 dataset

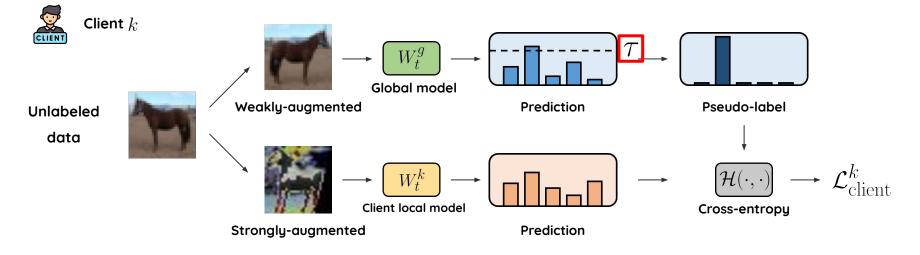


- Large performance gap between SSL and FSSL
 - Especially when the given labeled data is **scarce**
- **Confirmation bias** is the primary cause*
 - Overfits to easy-to-learn samples or incorrectly pseudo-labeled data

(FL)² : Few-Labels Federated Semi-Supervised Learning

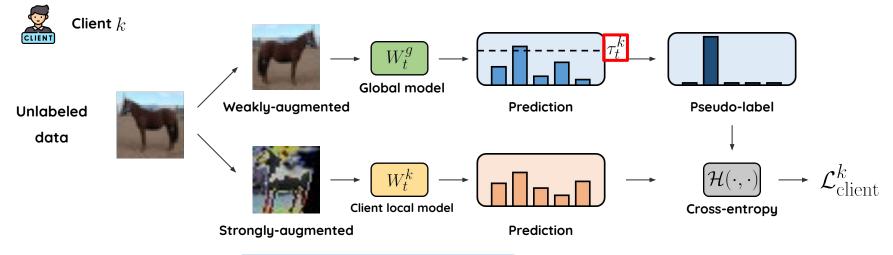


(FL)² : Client-specific Adaptive Thresholding



- Existing FSSL approaches use **fixed, high threshold** for pseudo-labeling ($\tau = 0.95$)
 - Only **small portion** of unlabeled data is utilized at the beginning of training
 - ⇒ Prone to overfitting
 - ▷ Increase confirmation bias

(FL)² : Client-specific Adaptive Thresholding



- Instead, we propose client-specific adaptive threshold (τ_t^k) based on client's learning progress
 - Low threshold at the beginning of training
 - Utilize more unlabeled data; Prevent overfitting
 - High threshold at later stages
 - Filter out wrong pseudo-labels
 - **Different threshold** for each clients according to their learning progress

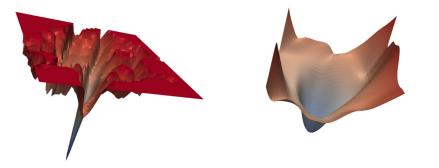
(FL)² : Learning Status-Aware Aggregation

• Existing FSSL approaches use **uniform aggregation weight**

$$W_{t+1}^g = \sum_{k=1}^K \beta^k W_t^k, \quad \text{where } \beta^k = \frac{1}{K}$$

- We propose learning status-aware aggregation
 - Client with **low** learning status (low au_t^k)
 - \Rightarrow Increase β^k so that local learning is **better reflected** in the global model
 - Client with **high** learning status (high τ_t^k)
 - \Rightarrow **Decrease** β^k , because data is already reflected in the global model

- SAM (Sharpness-Aware Minimization) shows **strong generalization capabilities** across various tasks
- Key idea: **'Flat' local minima** is good for generalization

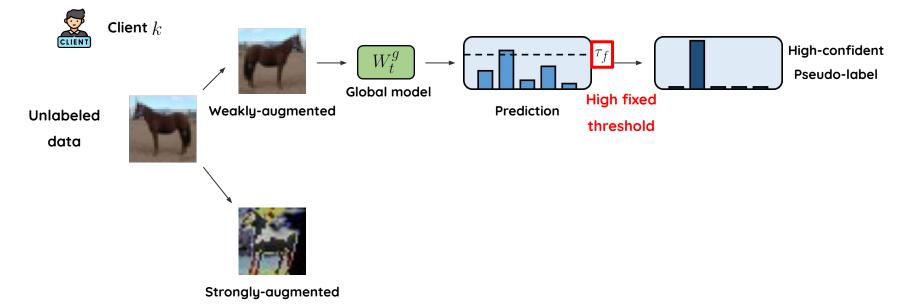


SAM loss landscape

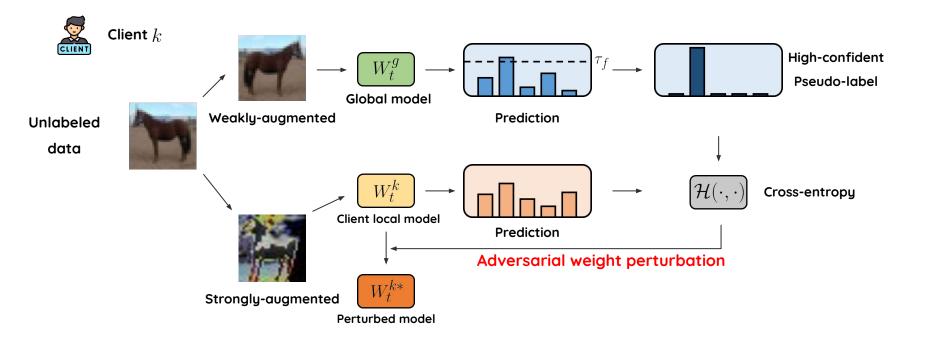
Normal loss landscape

However, naïve application of SAM to FSSL is suboptimal

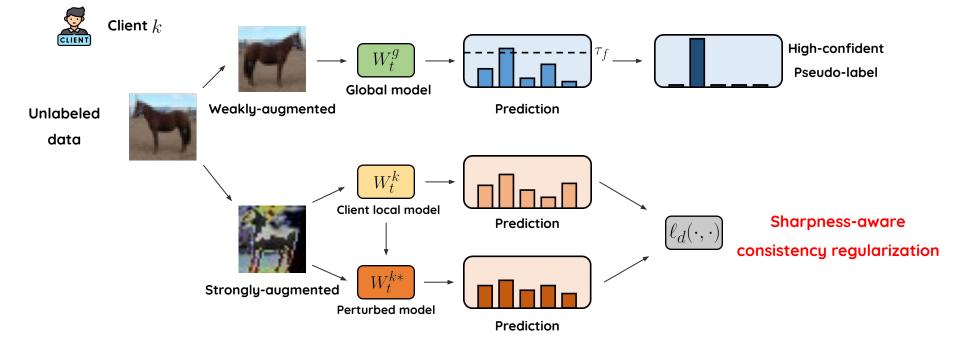
- SAM generalizes **both correctly and incorrectly** pseudo-labeled data
- Selecting data that are highly likely to be correct



• Adversarial weight perturbation with the pseudo-labeling loss



- SAM objective is **less effective in FSSL** compared to other tasks
- **Consistency regularization with perturbed model** instead of standard SAM objective



- Average accuracy(%) and standard deviation across three different seeds
- **Bold**: best result / <u>underline</u>: second-best result

Dataset		CIFAR10		SVHN		CIFAR100	
# of labeled data samples (N_L)		10	40	40	250	100	400
	FedMatch	16.0(2.3)	25.6(2.2)	20.7(2.7)	70.1(2.2)	6.3(0.3)	10.0(1.8)
Unbalanced Non-IID,	FedCon	16.6(2.1)	25.4(2.3)	20.5(1.4)	73.1(2.0)	4.0(0.4)	8.2(0.6)
Dir(0.1)	SemiFL	10.0(0.0)	19.9(7.5)	18.0(2.6)	82.3(1.8)	9.8(2.4)	13.5(5.0)
	$(FL)^2$	19.2(5.7)	36.4(1.4)	21.5(3.3)	88.0(1.0)	10.4(1.3)	23.5(1.2)
Unbalanced Non-IID, Dir(0.3)	FedMatch	15.3(1.3)	25.2(3.5)	22.3(0.7)	72.3(3.0)	5.5(1.5)	9.8(1.1)
	FedCon	16.9(2.4)	26.5(2.1)	21.6(1.7)	68.7(2.7)	5.8(0.6)	13.3(0.9)
	SemiFL	10.0(0.0)	38.0(2.7)	26.3(2.5)	42.7(40.1)	12.4(1.2)	18.9(9.7)
	$(FL)^2$	24.3(4.5)	43.5(7.5)	31.0(4.2)	92.6(0.5)	12.1(1.1)	25.4(1.0)
Balanced IID	FedMatch	16.2(1.9)	25.4(2.8)	18.4(4.7)	66.2(0.8)	6.4(0.6)	10.0(1.7)
	FedCon	16.7(2.0)	23.3(6.2)	20.3(1.0)	71.6(1.5)	5.7(0.6)	12.4(1.6)
	SemiFL	10.0(0.0)	75.3(2.8)	53.4(13.3)	43.3(41.0)	13.9(3.3)	27.9(6.1)
	$(FL)^2$	38.9(11.1)	81.5(7.4)	75.3(2.4)	94.6(1.1)	14.4(2.3)	28.1(2.2)

- (FL)² achieves **best** or **nearly the best** performance **across all settings**
 - SemiFL struggles to generalize even though performs best in few scenarios
 - (FL)² consistently maintains high performance across all tasks

- Average accuracy(%) and standard deviation across three different seeds
- **Bold**: best result / <u>underline</u>: second-best result

Dataset		CIFAR10		SVHN		CIFAR100	
# of labeled data samples (N_L)		10	40	40	250	100	400
	FedMatch	16.0(2.3)	25.6(2.2)	20.7(2.7)	70.1(2.2)	6.3(0.3)	10.0(1.8)
Unbalanced Non-IID,	FedCon	16.6(2.1)	25.4(2.3)	20.5(1.4)	73.1(2.0)	4.0(0.4)	8.2(0.6)
Dir(0.1)	SemiFL	10.0(0.0)	19.9(7.5)	18.0(2.6)	82.3(1.8)	9.8(2.4)	13.5(5.0)
	$(FL)^2$	19.2(5.7)	36.4(1.4)	21.5(3.3)	88.0(1.0)	10.4(1.3)	23.5(1.2)
Unbalanced Non-IID, Dir(0.3)	FedMatch	15.3(1.3)	25.2(3.5)	22.3(0.7)	72.3(3.0)	5.5(1.5)	9.8(1.1)
	FedCon	16.9(2.4)	26.5(2.1)	21.6(1.7)	68.7(2.7)	5.8(0.6)	13.3(0.9)
	SemiFL	10.0(0.0)	38.0(2.7)	26.3(2.5)	42.7(40.1)	12.4(1.2)	18.9(9.7)
	$(FL)^2$	24.3(4.5)	43.5(7.5)	31.0(4.2)	92.6(0.5)	12.1(1.1)	25.4(1.0)
Balanced IID	FedMatch	16.2(1.9)	25.4(2.8)	18.4(4.7)	66.2(0.8)	6.4(0.6)	10.0(1.7)
	FedCon	16.7(2.0)	23.3(6.2)	20.3(1.0)	71.6(1.5)	5.7(0.6)	12.4(1.6)
	SemiFL	10.0(0.0)	75.3(2.8)	53.4(13.3)	43.3(41.0)	13.9(3.3)	27.9(6.1)
	$(FL)^2$	38.9(11.1)	81.5(7.4)	75.3(2.4)	94.6(1.1)	14.4(2.3)	28.1(2.2)

- (FL)² achieves **best** or **nearly the best** performance **across all settings**
 - SemiFL struggles to generalize even though performs best in few scenarios
 - (FL)² consistently maintains high performance across all tasks

- Average accuracy(%) and standard deviation across three different seeds
- **Bold**: best result / <u>underline</u>: second-best result

Dataset		CIFAR10		SVHN		CIFAR100	
# of labeled data samples (N_L)		10	40	40	250	100	400
	FedMatch	16.0(2.3)	25.6(2.2)	20.7(2.7)	70.1(2.2)	6.3(0.3)	10.0(1.8)
Unbalanced Non-IID,	FedCon	16.6(2.1)	25.4(2.3)	20.5(1.4)	73.1(2.0)	4.0(0.4)	8.2(0.6)
Dir(0.1)	SemiFL	10.0(0.0)	19.9(7.5)	18.0(2.6)	82.3(1.8)	9.8(2.4)	13.5(5.0)
	$(FL)^2$	19.2(5.7)	36.4(1.4)	21.5(3.3)	88.0(1.0)	10.4(1.3)	23.5(1.2)
Unbalanced Non-IID, Dir(0.3)	FedMatch	15.3(1.3)	25.2(3.5)	22.3(0.7)	72.3(3.0)	5.5(1.5)	9.8(1.1)
	FedCon	16.9(2.4)	26.5(2.1)	21.6(1.7)	68.7(2.7)	5.8(0.6)	13.3(0.9)
	SemiFL	10.0(0.0)	38.0(2.7)	26.3(2.5)	42.7(40.1)	12.4(1.2)	18.9(9.7)
	$(FL)^2$	24.3(4.5)	43.5(7.5)	31.0(4.2)	92.6(0.5)	12.1(1.1)	25.4(1.0)
Balanced IID	FedMatch	16.2(1.9)	25.4(2.8)	18.4(4.7)	66.2(0.8)	6.4(0.6)	10.0(1.7)
	FedCon	16.7(2.0)	23.3(6.2)	20.3(1.0)	71.6(1.5)	5.7(0.6)	12.4(1.6)
	SemiFL	10.0(0.0)	75.3(2.8)	53.4(13.3)	43.3(41.0)	13.9(3.3)	27.9(6.1)
	$(FL)^2$	38.9(11.1)	81.5(7.4)	75.3(2.4)	94.6(1.1)	14.4(2.3)	28.1(2.2)

- (FL)² achieves **best** or **nearly the best** performance **across all settings**
 - SemiFL struggles to generalize even though performs best in few scenarios
 - (FL)² consistently maintains high performance across all tasks

- Average accuracy(%) and standard deviation across three different seeds
- **Bold**: best result / <u>underline</u>: second-best result

Dataset		CIFAR10		SVHN		CIFAR100	
# of labeled data samples (N_L)		10	40	40	250	100	400
	FedMatch	16.0(2.3)	25.6(2.2)	20.7(2.7)	70.1(2.2)	6.3(0.3)	10.0(1.8)
Unbalanced Non-IID,	FedCon	16.6(2.1)	25.4(2.3)	20.5(1.4)	73.1(2.0)	4.0(0.4)	8.2(0.6)
Dir(0.1)	SemiFL	10.0(0.0)	19.9(7.5)	18.0(2.6)	82.3(1.8)	9.8(2.4)	13.5(5.0)
	$(FL)^2$	19.2(5.7)	36.4(1.4)	21.5(3.3)	88.0(1.0)	10.4(1.3)	23.5(1.2)
Unbalanced Non-IID, Dir(0.3)	FedMatch	15.3(1.3)	25.2(3.5)	22.3(0.7)	72.3(3.0)	5.5(1.5)	9.8(1.1)
	FedCon	16.9(2.4)	26.5(2.1)	21.6(1.7)	68.7(2.7)	5.8(0.6)	13.3(0.9)
	SemiFL	10.0(0.0)	38.0(2.7)	26.3(2.5)	42.7(40.1)	12.4(1.2)	18.9(9.7)
	$(FL)^2$	24.3(4.5)	43.5(7.5)	31.0(4.2)	92.6(0.5)	12.1(1.1)	25.4(1.0)
Balanced IID	FedMatch	16.2(1.9)	25.4(2.8)	18.4(4.7)	66.2(0.8)	6.4(0.6)	10.0(1.7)
	FedCon	16.7(2.0)	23.3(6.2)	20.3(1.0)	71.6(1.5)	5.7(0.6)	12.4(1.6)
	SemiFL	10.0(0.0)	75.3(2.8)	53.4(13.3)	43.3(41.0)	13.9(3.3)	27.9(6.1)
	$(FL)^2$	38.9(11.1)	81.5(7.4)	75.3(2.4)	94.6(1.1)	14.4(2.3)	28.1(2.2)

- (FL)² significantly outperforms other methods when labeled data is extremely limited
 - **21.9%** in IID/SVHN/40-labels, **22.2%** in IID/CIFAR10/10-labels

(FL)² : Few-Labels Federated Semi-Supervised Learning

- Effectively reduces **confirmation bias** with novel methods
 - CAT: Client-specific Adaptive Thresholding
 - LSAA: Learning Status-Aware Aggregation
 - **SACR**: Sharpness-Aware Consistency Regularization
- Outperforms existing FSSL methods up to **23.0%** accuracy
- Closes gap between SSL and FSSL, especially when labels are scarce

