

香港理工大學

Shengchao Chen¹, Guodong Long¹, Jing Jiang¹, Chengqi Zhang²

Australian AI Institute, FEIT, University of Technology Sydney
 Department of Data Science and AI, The Hong Kong Polytechnic University

1. Motivations

2. Contributions

3. Framework

4. Datasets

5. Results

Accurate meteorology variables modeling is crucial in addressing the global threat of climate change.

Is it possible to *develop weather foundation models (WFMs)* that can effectively model meteorological variables across various regions?

□ From on-device meteorology variables modeling toward WFMs:

- Meteorology varibales across regions interact significantly (e.g., spatial relations), allowing for *mutually beneficial modeling*.
- Mainstream methods typically use task/data-specific deep models, the intuition for achieving excellent performance is that fuses large-scale cross-region datasets to centralised traning.

1. Motivations

2. Contributions

3. Framework

4. Datasets

5. Results

Current advancements about WFMs

- * Traning datasets: Large reanalysis (simulation) datasets (e.g., ERA5)
- * Models parameters: Large-scale model parameters
- * Traning strategy: centralized training

Not realistic for low-resource weather device in practice

Generic framework:

1. Motivations

2. Contributions

3. Framework

4. Datasets

5. Results

We propose LM-Weather, a generic FL framework that transforms Pretrained Language Models into customized models for on-device meteorological variable modeling. LM-Weather is parameter-, communication-, and data-efficient.

□ Adaption and communication mechansim:

We propose personalized adapter for local PLMs with LoRA, to facilitate knowledge transfer from text to weather sequences. In addition, we introduce low-rank communication to reduce overhead while maintaining performance.

□ Real-world datasets:

We compile real-world, real-observation datasets for on-device meteorological variable modeling, which pioneers in the field of on-device meteorological variable modeling.

1. Motivations

2. Contributions

3. Framework

4. Datasets

5. Results

- Distribued Architecture: Using federated learning to handle the Non-IID data among devices, while ensuring privacy and computional & communicatin burden from centralized training.
- Personliazed Adapter on PLM: Taming the local PLM via achieving knowledge transferring between text and weather sequence.
- Low-rank Communication: A minimal number of parameters are both computed and communicated.

Task Adapter have three independent generators, but firstly:

Sequence Decomposition:

3. Framework

4. Datasets

5. Results

Reversible Normalization:

$$\mathcal{X}^k_{ ext{Trend}} + \mathcal{X}^k_{ ext{Seasonal}} + \mathcal{X}^k_{ ext{Residual}} = ext{Decomp}(\mathcal{X}^k)$$

$$\mathcal{X}_{ ext{Trend}}' = \gamma_T \left(\mathcal{X}_{ ext{Trend}} - rac{\mathbb{E}[\mathcal{X}_{ ext{Trend}}]}{\sqrt{ ext{Var}\left[\mathcal{X}_{ ext{Trend}}
ight]} + \epsilon_T}
ight) + eta_T$$

 $P_d = P_{TO}^d + P_{PO}^d + P_{TE}^d$, where $d \in \{\text{Trend}, \text{Seasonal}, \text{Residual}\}$

\Box For each generator:

- * Token Embedding, using 1DCNN to tokenize each sample: $P_{TO}^{k} = CONV1D(\mathcal{X}^{k}), P_{TO} = CONV1D(\mathcal{X})$
- * Position Embedding, using a trainable lookup table to mapping each point's position: $P_{PO} = E(INDEX(\mathcal{X}))$
- * Temporal Embedding, encoding different $P_{\text{TE}} = \sum_{\alpha \in \{\text{mins,hours,days,weeks,months}\}} E_{\alpha}(\mathcal{X})$ time attributes to samples:

Personalized Adapter for Large Meteorology Model on Devices: Towards Weather Foundation Models (NeruIPS 2024)

1. Motivations

2. Contributions

3. Framework

4. Datasets

Contains 20 variables

	□ Four real-world datasets:
1. Motivations	ODW1 Series: ODW1T & ODW1V
2. Contributions	 ODW2 Series: ODW2T & ODW2V
3. Framework	T: has a heterogeneous time span, meaning the data collection start and
4. Datasets	end times vary by location.
5. Results	V: extends T-version by adding variability in the observed variables.

Abbreviation	Full name	Unit
ap	Air Pressure	hpa
t	Air Temperature	$^{\circ}C$
mxt	Maximum Temperature	$^{\circ}C$
mnt	Minimum Temperature	$^{\circ}C$
dt	Dewpoint Temperature	$^{\circ}C$
rh	Relative Humidity	%
wvp	Water Vapor Pressure	hpa
p1	Precipitation in 1h	\hat{mm}
p2	Precipitation in 3h	mm
p3	Precipitation in 6h	mm
p4	Precipitation in 12h	mm
p5	Precipitation in 24h	mm
wd	Wind Direction	$^{\circ}C$
ws	Wind Speed	ms^{-1}
mwd	Maximum Wind Direction	0
st	Land Surface Temperature	$^{\circ}C$
hv1	Horizontal Visibility in 1 min	m
hv2	Horizontal Visibility in 10 min	m
vv	Vertical Visibility	m

□ Main Results (Multivariate Forecasting)

Met	nod	LM-WI	EATHER-AVE	LM-W	EATHER	FL-G	PT4TS	FL-R	eformer	FL-Py	raformer	FL-D	Linear	FL-Pa	atchTST	FL-iTr	ansformer	FL-L	ightTS	FL-Tra	nsformer	FL-Ir	offrmer
Dataset	Length	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
2	96	44.1	74.8	42.3	71.1	46.3	78.5	70.7	92.9	67.2	86.1	49.7	78.6	45.0	77.0	48.4	80.2	54.8	85.6	50.7	82.1	51.9	83.2
ODWIT	192	$\frac{46.3}{47.9}$	$\frac{77.5}{79.3}$	44.4	73.6	48.6	81.3	75.1	98.3	70.0	90.9	52.3	81.8	47.3	79.8	51.8	84.3	59.5	90.6	52.1	84.0	52.9	84.6
ODWIT	720	$\frac{47.9}{51.8}$	83.0	49.2	78.5	54.4	87.2	87.1	102.9	80.5	95.2	57.2	87.3	53.3	85.6	60.1	93.1	72.4	102.7	55.4	87.6	55.3	87.4
	Avg.	47.5	78.7	45.4	74.6	49.9	82.5	78.2	98.7	73.0	91.3	53.3	82.8	48.6	81.0	53.7	63.7	62.7	93.4	52.8	84.7	53.4	85.2
	96	42.7	69.5	42.3	69.6	44.0	71.4	42.9	67.8	57.7	67.2	46.4	73.3	44.3	69.6	56.8	76.8	48.0	75.1	67.0	89.4	59.0	80.3
ODUIU	192	$\frac{45.5}{47.2}$	72.6	44.4	71.7	47.0	75.8	48.4	75.4	59.2 63.4	69.4 73.3	47.9	75.1	46.8	72.1	55.0 62.4	75.0	49.1	79.2	69.9	93.0	61.2	82.8
ODWIV	720	51.2	78.2	49.7	74.0	53.3	81.7	54.5	82.3	67.3	76.1	52.5	80.3	54.3	79.1	72.1	96.2	54.7	82.7	76.2	87.3	68.4	91.8
	Avg.	46.6	<u>73.6</u>	45.6	71.9	48.3	76.7	49.2	75.6	61.9	71.5	49.0	76.4	48.5	73.9	58.1	85.0	50.7	78.7	71.1	91.1	63.1	85.2
SC	96	64.3	88.2	62.8	85.5	66.8	91.7	100.3	126.3	95.0	120.3	67.9	84.7	70.2	88.1	68.6	86.5	68.4	85.4	85.0	103.0	84.7	102.7
	192	67.7	91.5	66.2	89.1	71.1	96.1	102.1	130.3	99.9	125.8	71.4	88.1	72.2	90.7	71.1	88.9	71.9	88.9	85.0	103.0	84.9	102.8
ODW2T	720	72.6	97.3	70.7	94.6	76.2	101.2	104.2	134.2	102.0	131.4	76.1	92.9	75.1	93.3	72.9	91.0	76.7	93.7	84.1	105.1	85.4	102.9
	Avg.	68.5	92.7	66.9	90.1	71.8	96.9	103.5	130.2	100.3	126.5	72.1	88.8	72.6	91.0	71.1	89.0	72.7	89.6	84.2	102.9	84.9	103.1
_	96	76.8	99.7	65.1	88.4	78.5	102.7	89.6	112.7	89.1	112.5	74.8	96.8	76.3	99.9	73.5	<u>97.7</u>	92.2	117.7	77.0	100.1	77.4	100.4
	192	77.9	100.8	68.3	91.4	79.7	103.8	90.5	114.2	96.4	120.1	76.6	<u>98.9</u>	79.9	103.3	78.8	103.6	100.5	128.1	78.3	101.8	78.0	101.1
ODW2V	720	79.9	101.5	72.9	96.5	82.0	104.5	97.4	120.4	100.5	122.2	79.6	100.2	86.2	100.2	86.2	112.7	1111.0	141.3	86.1	112.3	81.3	102.0
	Avg.	78.3	101.4	69.0	92.3	80.1	104.4	92.9	116.6	96.1	120.0	77.2	99.7	81.1	102.2	80.2	105.4	102.3	130.4	80.2	104.4	78.8	102.2
1^{st} C	ount		0	4	29		0		0	l	4		0	l	0		0	l	0		0		0

Few-shot Experiments (5% training data)

М	ethod	LM-WE	ATHER-AVE	LM-W	EATHER	FL-G	PT4TS	FL-R	eformer	FL-Py	raformer	FL-E	Dlinear	FL-Pa	tchTST	FL-iTra	insformer	FL-I	lights	FL-Tra	nsformer	FL-In	former
Metrics	Length	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
ODW1T	96 192 336 720 Avg.	88.1 <u>90.2</u> <u>94.2</u> <u>90.8</u>	<u>95.1</u> <u>98.4</u> <u>101.7</u> 98.4	87.3 89.6 92.2 89.7	93.9 96.5 99.7 96.7	91.6 95.8 100.0 - 95.8	100.9 104.6 108.2 - 104.6	166.9 166.9 168.9 - 167.7	296.0 297.3 297.5 - 296.9	173.6 176.0 177.6 - 175.7	299.2 303.0 303.0	92.4 94.4 95.9 - 94.2	187.5 192.4 193.2 - 191.0	85.1 90.7 96.5 - 90.7	182.7 191.6 197.4 <u>-</u> <u>190.6</u>	103.3 106.7 108.7 - 106.3	204.8 210.7 211.8 - 209.1	185.8 188.1 188.4 - 187.5	328.3 336.0 334.6 	93.7 96.8 100.2 - 96.9	193.5 200.1 203.3 - 199.0	91.1 93.5 99.3 - 94.6	190.0 195.9 201.0 - 195.6
ODW1V	96 192 336 720 Avg.	<u>79.6</u> <u>87.8</u> <u>103.9</u> <u>-</u> <u>90.4</u>	<u>104.3</u> <u>115.5</u> <u>133.4</u> <u>-</u> <u>117.7</u>	75.7 82.5 98.7 85.6	98.1 108.4 125.4 110.6	82.0 90.8 107.0 93.3	108.5 120.3 138.7 - 122.5	101.5 107.0 113.2 - 107.2	130.2 136.7 142.4 	81.6 90.2 106.1 - 92.6	107.5 118.9 137.5 121.3	98.8 110.4 120.0 - 109.7	127.4 141.6 153.2 - 140.7	327.6 334.4 341.6 - 334.5	392.4 403.4 413.7 403.2	135.0 145.4 122.1 - 134.2	168.3 180.2 153.5 	111.0 117.5 126.3 - 118.3	141.6 149.2 159.7 -	116.6 123.4 133.6 - 124.5	155.8 164.1 161.3 	111.5 116.0 123.2 - 116.9	144.9 152.4 167.4 - 154.9
ODW2T	96 192/336/720 Avg.	111.0 - 111.0	159.4 159.4	99.0 - 99.0	135.5 135.5	127.9 - 127.9	178.2 178.2	158.3 - 158.3	241.2 241.2	173.3 - 173.3	247.1 	107.1	152.8 152.8	<u>101.2</u> <u>-</u> <u>101.2</u>	<u>147.9</u> 	115.9 - 115.9	166.3 - 166.3	183.6	273.3 	142.3	199.6 - 199.6	158.8	201.3 201.3
ODW2V	96 192/336/720 Avg.	<u>105.3</u> <u>105.3</u>	<u>135.7</u> <u>135.7</u>	96.8	122.1 122.1	110.2 - 110.2	155.4 - 155.4	151.5 - 151.5	190.7 - 190.7	150.5 - 150.5	189.3 - 189.3	112.2 - 112.2	141.2 - 141.2	115.5 - 115.5	145.8 145.8	110.2 - 110.2	143.4 - 143.4	162.1 - 162.1	212.5 212.5	106.4	136.8 - 136.8	149.6 - 149.6	188.2 188.2
1st	Count	1	1	1	16		0		0	1	0	1	0		2		0		0		0		0

Personalized Adapter for Large Meteorology Model on Devices: Towards Weather Foundation Models (NeruIPS 2024)

1. Motivations

2. Contributions

3. Framework

4. Datasets

□ Main Results (Imputation, 50% masking ratio)

Meth	nod	LM-W	EATHER-AVE	LM-W	EATHER	FL-G	PT4TS	FL-R	eformer	FL-Py	raformer	FL-D	Linear	FL-Pa	tchTST	FL-iTra	ansformer	FL-L	ightTS	FL-Tra	nsformer	FL-In	former
Dataset	Length	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
	96	$\frac{22.4}{23.4}$	$\frac{43.5}{43.7}$	21.7	41.8	23.3	45.2	63.7	88.4	62.2	85.9	29.2	50.8	28.9	54.6	22.8	44.5	24.4	43.7	58.3	82.8	70.8	99.6 02.1
ODW1T	336	$\frac{23.4}{24.1}$	<u>44.1</u>	23.2	42.4	25.3	46.3	70.4	93.4	68.5	90.6	28.3	49.4	48.6	77.0	27.2	47.7	26.9	46.6	58.4	83.5	36.9	55.3
	Avg.	$\frac{26.0}{24.0}$	$\frac{45.1}{44.1}$	24.9	43.3 42.4	27.3	47.4 46.2	69.8	96.8 92.5	68.0	93.9 89.7	28.0	49.0 49.9	56.6 45.4	85.1 73.5	36.5 27.6	56.2 48.2	27.2	47.4 45.7	56.6	80.4 82.3	61.4	96.7 85.9
ODW1V	96 192 336 720	$\begin{array}{c c} 42.1 \\ 43.9 \\ \underline{45.7} \\ \underline{47.5} \end{array}$	62.0 64.5 66.6 <u>68.7</u>	41.1 42.8 44.6 46.3	60.4 62.8 64.9 66.9	42.9 45.6 47.5 49.4	63.8 66.9 69.2 71.4	43.8 45.8 47.6 49.6	64.9 67.6 69.8 72.0	42.3 44.7 54.6 59.2	53.0 56.2 65.7 73.5	43.0 49.3 53.4 56.8	63.0 71.2 76.6 80.7	53.6 57.5 60.7 63.3	77.1 81.5 85.0 87.4	38.7 49.3 60.0 61.6	58.2 68.9 79.8 80.4	41.5 41.9 47.3 52.5	61.5 62.0 64.6 72.9	37.8 44.1 48.5 52.7	56.9 57.4 68.0 70.1	41.1 48.8 50.2 60.3	59.2 66.8 67.1 77.2
-	Avg.	44.8	65.5	43.7	<u>63.8</u>	46.4	67.8	46.7	68.6	50.2	62.1	50.6	72.9	58.8	82.7	52.4	71.8	45.8	65.3	45.8	63.1 06.6	50.1	67.6
ODW2T	96 192 336 720 Avg.	$\begin{array}{r} \underline{38.0} \\ \underline{38.3} \\ \underline{43.5} \\ \underline{47.9} \\ \underline{41.9} \end{array}$	56.6 56.6 65.5 68.8 61.9	36.9 37.2 42.2 46.5 38.8	54.9 54.9 63.5 66.7 61.7	39.1 39.8 44.8 49.8 43.4	58.3 58.9 68.1 71.5 64.2	50.3 52.1 56.6 64.3 55.8	70.3 74.2 78.9 87.7 77.8	95.4 96.2 97.8 99.1 97.1	120.8 122.3 125.5 129.9 124.6	40.8 42.9 46.0 52.8 45.6	60.0 62.7 67.7 76.1 66.6	38.4 66.7 68.7 70.4 61.1	58.6 87.8 90.1 93.5 82.5	39.1 39.4 44.8 49.3 43.2	58.3 58.3 67.5 71.0 63.8	38.8 39.5 47.8 48.0 43.5	57.8 58.4 65.3 68.0 62.4	65.5 71.4 66.8 67.4 67.8	86.6 92.8 88.8 89.2 89.4	51.7 55.0 51.5 51.5 52.4	72.0 75.7 72.8 73.0 73.4
ODW2V	96 192 336 720 Avg.	$ \begin{array}{r} \underline{28.1} \\ \underline{28.6} \\ \underline{33.7} \\ \underline{37.1} \\ \underline{31.9} \end{array} $	$ \frac{45.3}{45.3} \\ \frac{49.8}{53.1} \\ \frac{48.4}{48.4} $	27.5 28.0 32.7 36.0 31.1	44.0 44.0 48.4 51.5 47.0	28.4 29.2 34.9 39.3 33.0	45.8 46.1 51.8 56.3 50.0	50.3 51.0 54.2 59.4 53.7	70.3 71.1 76.6 81.7 74.9	53.2 46.1 74.2 82.4 64.0	72.4 65.2 97.3 100.9 84.0	72.1 75.7 77.3 77.1 75.5	92.0 95.9 97.8 97.3 95.8	39.8 44.9 50.9 59.2 48.7	58.4 63.7 70.1 79.3 67.9	72.7 79.1 82.6 83.0 79.4	94.7 102.0 106.1 106.0 102.2	96.4 98.6 101.2 98.5 98.7	123.5 125.8 128.8 124.3 125.6	52.7 53.9 54.4 55.4 54.1	73.2 74.7 75.4 77.5 75.2	54.8 56.2 56.8 56.4 56.0	76.9 78.8 79.7 78.6 78.5
1^{st} C	ount	l I	0	:	30		0	[0		0		0		0	ř.	0		0	1	0		0

Few-shot Experiments (5% training data, 50% masking ratio)

М	ethod	LM-WE	EATHER-AVE	LM-W	/EATHER	FL-G	PT4TS	FL-R	eformer	FL-Py	raformer	FL-D	Linear	FL-Pa	tchTST	FL-iTra	ansformer	FL-L	ightTS	FL-Tra	nsformer	FL-In	former
Ratio	Length	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
ODW1T	96 192 336/720 Avg.	61.2 69.1 - 65.2	121.2 <u>130.2</u> <u>125.7</u>	59.9 64.7 62.3	120.8 127.7 - 124.4	62.4 67.3 64.9	138.6 145.2 - 141.9	147.4 151.3 149.4	261.3 267.8 264.6	149.5 152.0 - 150.8	256.4 258.1 257.3	110.0 110.1 - 110.0	209.1 203.4 - 206.2	64.2 74.1 - 69.2	147.0 155.1 - 151.0	119.0 120.9 - 120.0	228.5 223.0 - 225.7	173.0 172.2 - 172.6	310.8 301.4 - 306.1	140.8 149.1 - 145.0	260.0 262.4 261.2	143.9 150.3 - 147.1	264.7 264.2 - 264.4
ODW1V	96 192 336/720 Avg.	62.2 71.4 66.8	134.1 <u>140.5</u> <u>137.3</u>	62.8 72.2 67.5	135.5 142.1 - 138.8	67.3 74.6 71.0	131.2 152.7 142.0	103.9 103.3 - 103.6	189.8 182.4 - 186.1	61.5 70.6 66.1	132.6 138.8 135.7	112.2 113.3 - 112.7	208.4 200.6 - 204.5	161.1 160.5 - 160.8	281.5 272.4 276.9	117.6 124.5 - 121.0	219.5 218.9 - 219.2	119.6 122.7 - 121.2	223.5 217.8 - 220.7	98.0 101.8 - 101.8	198.5 191.3 - 194.9	94.2 96.7 95.5	188.1 181.5 - 184.8
ODW2T	96 192/336/720 Avg.	<u>102.5</u> <u>102.5</u>	<u>156.3</u> <u>156.3</u>	99.4 - 99.4	151.6 151.6	112.0 - 112.0	157.2 - 157.2	116.2 - 116.2	161.3 161.3	124.9 - 124.9	165.6 - 165.6	123.7 - 123.7	178.3 - 178.3	173.0 - 173	256.7 - 256.7	127.3 - 127.3	190.6 - 190.6	133.8 - 133.8	200.3 - 200	124.3 - 124.3	187.5 - 188	105.7 - 105.7	161.1 - 161.0
ODW2V	96 192/336/720 Avg.	$\begin{vmatrix} \frac{42.4}{-} \\ \frac{42.4}{-} \end{vmatrix}$	<u>62.9</u> <u>62.9</u>	35.7	112.1 - 112.1	56.4	77.3 77.3	106.8	135.5 - 135.5	70.8	95.5 95.5	113.3 - 113.3	148.0 - 148.0	153.8	199.5 - 199.5	101.8	136.4 136.4	106.1 - 106.1	142.2 142.2	100.1 - 100.1	134.6 - 134.6	89.8 - 89.8	119.0 - 119.0
1^{st}	Count		0		12		1		0	2	6		0		0		0		0		0		0

Personalized Adapter for Large Meteorology Model on Devices: Towards Weather Foundation Models (NeruIPS 2024)

1. Motivations

2. Contributions

3. Framework

4. Datasets

□ Ablation Study

	Ta	sk	8	Ablation Perspective	Ave. Va	riations	Params.#		
Method	Method Forecasting Imputation		Model Component	Personalized Method	Forecasting	Imputation	Train.#	Comm.#	
LM-WEATHER	45.4/74.6	23.1/40.0	Original	Original	-		10.38 M	0.38 M	
LM-WEATHER-A	50.8/87.6	26.0/47.7	wo Decomposition	Original	11.8%	12.6%	10.38 M	0.38 M	
LM-WEATHER-B	50.9/85.6	25.4/47.1	wo Trend Component	Original	12.1%	10.0%	10.37 M	0.38 M	
LM-WEATHER-C	50.1/83.6	25.0/46.1	wo Seasonal Component	Original	10.3%	\$ 8.2%	10.37 M	0.38 M	
LM-WEATHER-D	49.3/81.7	24.4/45.6	wo Residual Component	Original	\$ 8.6%	\$5.6%	10.37 M	0.38 M	
LM-WEATHER-E	53.8/95.6	25.5/47.0	wo Prompt Generator	Original	18.5%	10.4%	10.36 M	0.38 M	
LM-WEATHER-F	49.4/82.3	28.1/52.0	Original	w LoRA, Local: Low-Rank Matrix, Global: the rest of trainable param.	18.8%	121.6%	10.38 M	10.00 M	
LM-WEATHER-G	43.2/71.4	22.4/39.1	Original	wo LoRA, Local: Attention Param. Global: Attention Param	† 5.1%	↑ 3.1%	52.01 M	41.99 M	
LM-WEATHER-H	42.7/71.2	22.2/39.3	Original	wo LoRA, Local: Attention Param. Global: the rest of trainable param.	↑ 6.3%	↑ 4.1%	52.01 M	10.00 M	

2. Contributions

1. Motivations

3. Framework

4. Datasets

- The personalized adapter *effectively strength PLM's capabilities* for weather data modeling, providing a balance between performance and efficiency.
- Compared to other tuning strategies, our LoRA-based local tuning and communication method significantly improves the computional and communication efficiency of our framework.

□ Framework Analysis (compared to FL baselines that prioritize communication efficiency)

	Method	Forecasting	Imputation	Train.	Comm. Params.	Comm.
	FL-Pyraformer	73.0/91.3	68.0/89.7	153.32 M	153.32 M	0.07×
	FL-PatchTST	48.6/81.0	45.4/73.5	74.74 M	74.74 M	0.14×
1. Motivations	FL-LightTS	62.7/93.4	26.1/45.7	1.68 M	1.68 M	6.2×
	FL-DLinear	63.3/82.8	28.5/49.9	1.06 M	1.06 M	9.8×
2. Contributions	LM-WEATHER-Ave	47.5/78.7	24.0/44.1	10.38 M	10.38 M	1×
	LM-WEATHER (Ours)	45.4/74.6	23.1/42.4	10.38 M	0.38 M	27.3×
	LM-WEATHER (w FedKD)	49.6/76.2	27.5/43.6	10.38 M	1.68 M	6.2×
3. Framework	LM-WEATHER (w FedPer)	52.1/79.0	25.1/44.3	10.38 M	8.46 M	1.2×
	LM-WEATHER (w FedBF)	46.2/78.1	23.7/44.0	10.49 M	10.49 M	0.9×
1 Datacote	LM-WEATHER (w FedAP)	47.4/79.2	24.3/44.7	10.38 M	9.6 M	1.1×
	LM-WEATHER (w PromptFL)	46.0/78.4	23.8/45.1	10.38 M	8.4 M	1.2×

Our method significantly outperforms the communication-efficient FL baselines in terms of communication efficiency.

□ Framework Analysis (Robustness to Number of Devices)

		Nor	mal	Few-Shot (15%)					
Dataset	Rate / Devices	Forecasting	Imputation	Forecasting	Imputation				
	0.1 (2/round)	44.4/73.6	22.6/42.0	64.7/100.4	40.2/68.2				
	0.3 (5/round)	43.7/72.5 († 1.55)	24.2/43.7 (↓ 5.55)	63.4/99.7 († 1.40)	41.4/68.7 (↓ 1.85)				
ODW1T	0.5 (8/round)	42.9/72.0 († 2.85)	21.0/42.1 († 3.90)	63.7/99.2 († 1.40)	42.3/68.5 (\ 2.8)				
02011	0.7 (11/round)	43.9/74.1 († 0.25)	21.8/41.2 († 2.80)	64.5/101.0 (↑ 0.10)	39.5/66.7 († 2.00)				
	1.0 (16/round)	44.2/74.0 (0 -)	21.3/41.6 († 3.10)	63.6/100.2 († 0.95)	40.4/68.0 (↓ 0.1)				
	0.1 (4/round)	66.2/89.1	37.2/54.9	89.7/131.8	77.2/112.6				
	0.3 (11/round)	68.2/89.7 (↓ 1.85)	36.5/53.1 († 2.65)	90.2/132.5 (\$\$\pt 0.55)	75.4/110.3 († 2.25)				
ODW2T	0.5 (18/round)	65.4/89.2 († 0.55)	36.7/53.4 († 2.05)	89.1/131.4 († 0.50)	76.5/111.2 († 1.10)				
02/11	0.7 (25/round)	65.7/88.8 († 0.90)	36.1/53.9 († 2.45)	88.9/130.9 († 0.80)	76.9/112.3 († 0.35)				
	1.0 (36/round)	65.9/89.0 († 0.25)	36.9/55.0 († 0.30)	89.1/130.7 († 0.75)	76.7/112.1 († 0.50)				

- Increasing device count during training slightly boosts performance in both regular and few-shot settings.
- Data distribution imbalances can degrade performance when adding devices, showing non-linear gains.

More deivces incrsase communication costs, potentially outweighting minor performance gains.

Personalized Adapter for Large Meteorology Model on Devices: Towards Weather Foundation Models (NeruIPS 2024)

- **1.** Motivations
- 2. Contributions
- 3. Framework
- 4. Datasets

[Our Survey]

香港理工大學

