

Rochester Institute of Technology

Be Confident in What You Know: Bayesian Parameter Efficient Fine-Tuning of Vision Foundation Models

Deep Shankar Pandey[†], Spandan Pyakurel[†], Qi Yu^{*} Rochester Institute of Technology

Few shot adaptation

Accuracy Vs. ECE on CIFAR100 few-shot adaptation from different PEFT methods

Under-Confidence Issue

Why Is The Model Accurate?

- Low dissonance implies a high accuracy, shown by **Dissonance-Accuracy curve.**
- Area Under the Curve of the Accuracy vs. (1 dissonance) is high.
- Model is able to clearly discriminate the ground-truth label from the rest without much confusion.

Why Is The Model Under-Confident?

- □ Model generally assigns very low evidence to all the labels, including the correct one.
- Higher vacuity assigned to the most of the samples due to lack of evidence.

Base Rate Adjustment

- Adjust the prior belief gained through pre-training
- The relative order of the Dirichlet parameters assigned to different classes is preserved
- The gap between the Dirichlet parameters for different classes is transformed such that the model becomes more confident in its predictions

$$oldsymbol{lpha} = \mathcal{A}_m ig(f_{ heta}(\mathbf{x_i}) ig) = \mathbf{e} + W oldsymbol{\chi} \quad, \quad \chi_i = a_i^{\mathtt{adj}} = ig(rac{e_i - e_{\mathtt{min}}}{e_{\mathtt{min}}} ig)^m$$

Theorem 3. For any $m \ge 1$, the transformation function \mathcal{A}_m transforms the base rate for the class with the highest evidence e_{max} and class with the second highest evidence e_{2nd} such that the gap in Dirichlet parameters between the two classes is non-decreasing.

Building A Diversity Induced Evidential Ensemble

Illustration of diversity

Lemma 4. For given incorrect evidence regularization \mathcal{L}_{reg}^{inc} , and E ensemble components with regularization strengths $\lambda_p, p \in [1, P]$, the ensemble components in the evidence space are implicitly pushed away from each other by a force $\lambda_p \nabla \mathcal{L}_{reg}^{inc}$ that acts identical to the repulsive force in Stein Variational Gradient Descent (SVGD) based ensembles.

Overview

Be Confident in What You Know: Bayesian Parameter Efficient Fine-Tuning of Vision Foundation Models

Be Confident in What You Know: Bayesian Parameter Efficient Fine-Tuning of Vision Foundation Models

Experimental Results

Standard PEFT Methods

- **G** Reasonable generalization performance
- **Poor ECE (underconfidence issue)**

Base-rate adjustment

Addresses underconfidence issue

B-PEFT

- **G** Further improves calibration (Best ECE)
- **Gamma** Superior generalization performance

Table 1: Prediction accuracy and ECE performance on Few-shot Adaptation								
K (Shot)	Cifar10		Cifar100		Food101		Flowers102	
	Accuracy ↑	ECE \downarrow	Accuracy ↑	ECE \downarrow	Accuracy ↑	ECE \downarrow	Accuracy ↑	ECE \downarrow
(a) Standard Model								
-Shot	$69.578_{\pm 1.351}$	$0.437_{\pm 0.010}$	$ 48.637_{\pm 0.757} $	$0.393_{\pm 0.008}$	$35.702_{\pm 1.095}$	$0.263_{\pm 0.009}$	$88.161_{\pm 0.91}$	$0.61_{\pm 0.004}$
2-Shot	$81.771_{\pm 1.333}$	$0.400_{\pm 0.016}$	$64.501_{\pm 0.303}$	$0.494_{\pm 0.002}$	$53.954_{\pm 0.659}$	$0.39_{\pm 0.004}$	$93.462_{\pm 1.072}$	$0.55_{\pm 0.006}$
5-Shot	$88.707_{\pm 0.423}$	$0.255_{\pm 0.008}$	$76.758_{\pm 0.525}$	$0.517_{\pm 0.001}$	65.586 ± 0.197	$0.424_{\pm 0.002}$	$97.363_{\pm 0.165}$	$0.472_{\pm 0.013}$
0-Shot	$91.061_{\pm 0.217}$	$0.212_{\pm 0.005}$	$80.720_{\pm 0.329}$	$0.501_{\pm 0.003}$	71.566 ± 0.069	$0.444_{\pm 0.003}$	$98.244_{\pm 0.114}$	$0.439_{\pm 0.018}$
20-Shot	$92.678_{\pm 0.37}$	0.166 ± 0.004	82.608 ± 0.266	$0.487_{\pm 0.004}$	$74.914_{\pm 0.178}$	0.460 ± 0.003	$98.431_{\pm 0.100}$	$0.425_{\pm 0.017}$
(b) Evidential Model								
-Shot	$70.197_{\pm 1.013}$	$0.557_{\pm 0.011}$	$51.127_{\pm 0.435}$	$0.499_{\pm 0.004}$	$36.297_{\pm 1,407}$	$0.349_{\pm 0.014}$	$89.225_{\pm 1.03}$	0.846 ± 0.004
2-Shot	$81.613_{\pm 1.736}$	$0.553_{\pm 0.01}$	65.545 ± 0.339	$0.620_{\pm 0.004}$	52.855 ± 0.551	0.485 ± 0.005	$95.071_{\pm 0.413}$	$0.874_{\pm 0.006}$
5-Shot	88.764 ± 0.896	$0.391_{\pm 0.015}$	77.561 ± 0.716	$0.744_{\pm 0.006}$	$65.135_{\pm 0.27}$	$0.536_{\pm 0.005}$	$97.602_{\pm 0.199}$	$0.686_{\pm 0.02}$
0-Shot	92.014 ± 0.353	$0.388_{\pm 0.006}$	$81.561_{\pm 0.291}$	$0.765_{\pm 0.002}$	70.863 ± 0.261	$0.673_{\pm 0.003}$	$98.326_{\pm 0.233}$	$0.444_{\pm 0.008}$
20-Shot	$93.029_{\pm 0.239}$	$0.360_{\pm 0.015}$	$83.100_{\pm 0.184}$	$0.782_{\pm 0.001}$	72.060 ± 0.309	$0.599_{\pm 0.003}$	$98.708_{\pm 0.014}$	$0.411_{\pm 0.013}$
(c) Base-rate adjusted Evidential Model (Calibrated Evidential Model)								
-Shot	$ 70.197_{\pm 1.013} $	$0.027_{\pm 0.002}$	$ 51.127_{\pm 0.435} $	$0.077_{\pm 0.004}$	$36.297_{\pm 1.407}$	$0.081_{\pm 0.011}$	$89.225_{\pm 1.03}$	$0.025_{\pm 0.004}$
2-Shot	$81.613_{\pm 1.736}$	$0.040_{\pm 0.013}$	65.545 ± 0.339	0.08 ± 0.003	52.855 ± 0.551	0.063 ± 0.006	$95.071_{\pm 0.413}$	$0.023_{\pm 0.003}$
5-Shot	88.764 ± 0.896	$0.028_{\pm 0.006}$	$77.561_{\pm 0.716}$	$0.044_{\pm 0.002}$	$65.135_{\pm 0.270}$	$0.037_{\pm 0.003}$	$97.602_{\pm 0.199}$	$0.015_{\pm 0.002}$
0-Shot	$92.014_{\pm 0.353}$	$0.019_{\pm 0.001}$	$81.561_{\pm 0.291}$	$0.034_{\pm 0.002}$	$70.863_{\pm 0.261}$	$0.054_{\pm 0.002}$	$98.326_{\pm 0.233}$	$0.023_{\pm 0.003}$
20-Shot	$93.029_{\pm 0.239}$	$0.016_{\pm 0.002}$	$83.100_{\pm 0.184}$	$0.031_{\pm 0.001}$	$72.060_{\pm 0.309}$	$0.050_{\pm 0.002}$	$98.708_{\pm 0.014}$	$0.021_{\pm 0.000}$
(d) B-PEFT Model (Ours)								
-Shot	74.674+0.968	$0.024_{\pm 0.002}$	$52.335_{\pm 0.610}$	$0.067_{\pm 0.001}$	$38.745_{\pm 0.184}$	$0.021_{\pm 0.001}$	90.238 +0.101	$0.023_{\pm 0.001}$
2-Shot	83.865+0.735	$0.022_{\pm 0.002}$	$67.563_{\pm 0.272}$	$0.056_{\pm 0.001}$	54.661+0.017	$0.020_{\pm 0.001}$	95.715+0.020	$0.021_{\pm 0.002}$
5-Shot	90.556±0 160	0.017 _{±0.001}	80.081+0.067	0.036±0.000	66.548±0 110	$0.034_{\pm 0.001}$	97.807+0.066	0.014+0.002
0-Shot	92.956+0.086	$0.014_{\pm 0.000}$	83.038+0.045	$0.031_{\pm 0.000}$	$71.661_{\pm 0.212}$	$0.038_{\pm 0.002}$	98.050 ± 0.041	$0.011_{\pm 0.001}$
20-Shot	93.833 _{+0.021}	$0.014_{\pm 0.001}$	83.748 _{+0.065}	$0.030_{\pm 0.001}$	$75.495_{\pm 0.128}$	$0.043_{\pm 0.001}$	$98.193_{\pm 0.020}$	$0.010_{\pm 0.001}$
	10.021	20.001	20.000	20.001	10.120	20.001	1.0.020	10.001

Experimental Results

 Table 2: ECE Performance Comparison

Model	1 Shot	2 Shot	5 Shot	10 Shot
CE Model [32]	0.393	0.494	0.517	0.501
Evidential Model [56]	0.499	0.620	0.744	0.765
TS [26]	0.092	0.074	0.043	0.036
PTS [61]	0.145	0.129	0.096	0.083
IR-MC [6]	0.091	0.104	0.103	0.085
BR-Evid (Ours)	0.077	0.080	0,044	0.034
B-PEFT (Ours)	0.067	0.056	0.036	0.031

Table 3: Adapter and Bias Fine Tuning Results

	Bi	as	Adapter					
K (Shot)	Accuracy ↑	ECE↓	Accuracy ↑	ECE \downarrow				
(a) Standard Model								
1-Shot	$ 35.514_{\pm 2.420} $	$0.296_{\pm 0.023}$	$46.150_{\pm 1.150}$	$0.386_{\pm 0.010}$				
2-Shot	$55.098_{\pm 4.932}$	$0.384_{\pm 0.036}$	$66.789 _{\pm 0.514}$	$0.513_{\pm 0.003}$				
5-Shot	74.203 ± 0.467	$0.383_{\pm 0.002}$	$78.738_{\pm 0.032}$	$0.503_{\pm 0.000}$				
10-Shot	$79.141_{\pm 0.233}$	$0.336_{\pm 0.002}$	$81.589_{\pm 0.031}$	$0.470_{\pm 0.000}$				
(b) Evidential Model								
1-Shot	$ 36.243_{\pm 4.113} $	$0.3498_{\pm 0.041}$	$47.391_{\pm 1.421}$	$0.463_{\pm 0.014}$				
2-Shot	$58.258_{\pm 3.884}$	0.516 ± 0.032	$67.523_{\pm 0.674}$	$0.654_{\pm 0.006}$				
5-Shot	$75.643_{\pm 0.698}$	$0.509_{\pm 0.006}$	$79.875_{\pm 0.051}$	$0.670_{\pm 0.001}$				
10-Shot	$80.158_{\pm 0.284}$	$0.454_{\pm 0.001}$	$82.674_{\pm 0.044}$	$0.731_{\pm 0.001}$				
(c) Base-rate adjusted Evidential Model								
1-Shot	$ 36.243_{\pm 4.113} $	$0.061 \pm_{0.011}$	$47.391_{\pm 1.421}$	$0.081_{\pm 0.005}$				
2-Shot	$58.258_{\pm 3.884}$	$0.077 \pm_{0.004}$	$67.523_{\pm 0.674}$	$0.070_{\pm 0.001}$				
5-Shot	$75.643_{\pm 0.698}$	$0.069_{\pm 0.002}$	$79.875_{\pm 0.051}$	$0.057_{\pm 0.000}$				
10-Shot	$80.158_{\pm 0.284}$	$0.063_{\pm 0.001}$	$82.674_{\pm 0.044}$	$0.052_{\pm 0.001}$				
(d) B-PEFT Model (Ours)								
1-Shot	$ 37.825_{\pm 0.344} $	$0.050_{\pm 0.002}$	$48.732_{\pm 0.225}$	$0.076_{\pm 0.002}$				
2-Shot	$62.796_{\pm 1.080}$	$0.065_{\pm 0.005}$	$69.187_{\pm 0.153}$	$0.068_{\pm 0.002}$				
5-Shot	$77.181_{\pm 0.195}$	$0.062_{\pm 0.001}$	$79.918_{\pm 0.010}$	$0.051_{\pm 0.001}$				
10-Shot	80.788 ± 0.064	$0.059_{\pm 0.008}$	$82.748_{\pm 0.016}$	$0.049_{\pm 0.001}$				

Experimental Results

Impact of hyperparameter

Number of Shots vs ECE

Summary

- Standard PEFT techniques for supervised vision foundation transformer models lead to accurate but **poorly calibrated and highly underconfident models**
- B-PEFT: Enables uncertainty awareness with improved generalization and calibration.

Thank you!

All Codes available at https://github.com/ritmininglab/B-PEFT

Any Questions? Feel free to reach out to us at Mining Lab RIT (https://www.rit.edu/mining/)

Be Confident in What You Know: Bayesian Parameter Efficient Fine-Tuning of Vision Foundation Models