

Black-Box Forgetting

Yusuke Kuwana¹ Yuta Goto¹ Takashi Shibata² Go Irie¹ ¹Tokyo University of Science ²NEC Corporation

Motivation

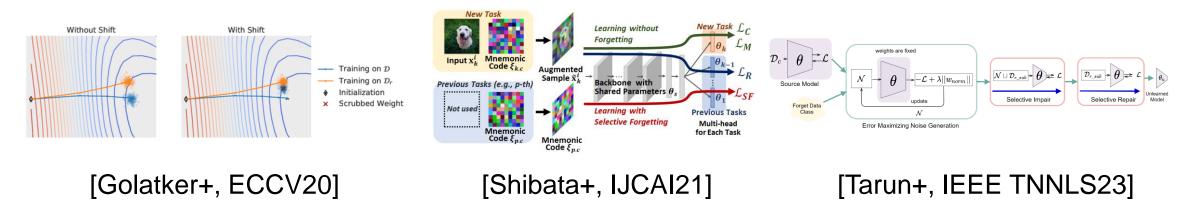
Large-scale pre-trained models (PTMs) have strong capabilities of zero-shot classification for everyday objects.


ex. CLIP [Radford+, ICML21]

Motivation

Practical applications do not always require the classification of all kinds of objects.

ex. Autonomous driving system

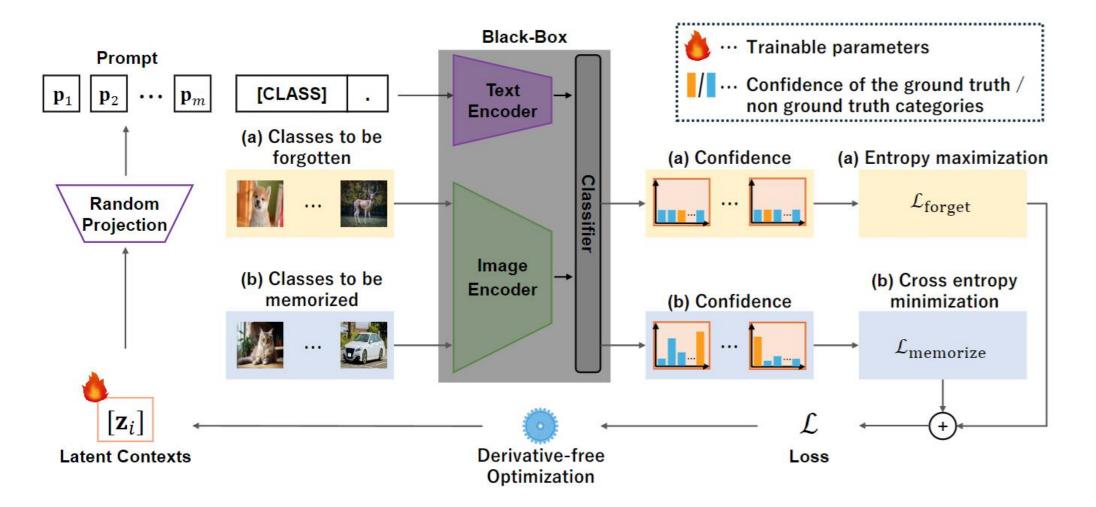

Retaining unnecessary classes may have disadvantages.

- Decrease overall accuracy
- Information leakage

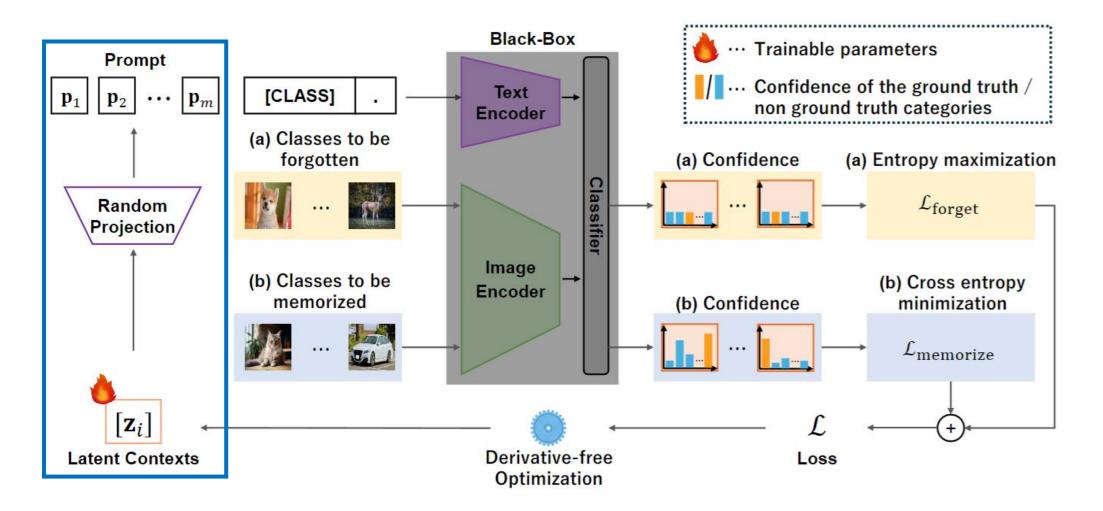
We address the problem of selective forgetting.

Motivation

Existing selective forgetting methods

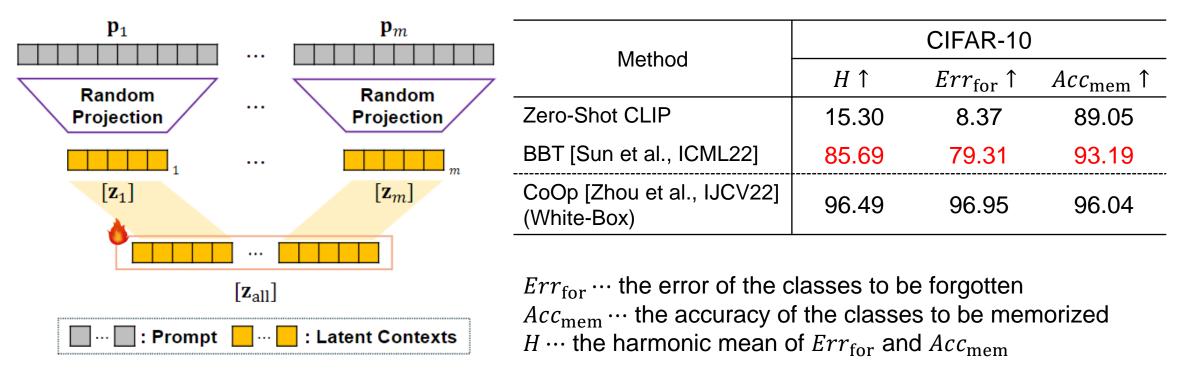

All the existing methods assume "white-box" settings, where model information is available for training.

However, PTMs are often "black-box," where model information is unavailable for commercial reasons or social responsibilities.

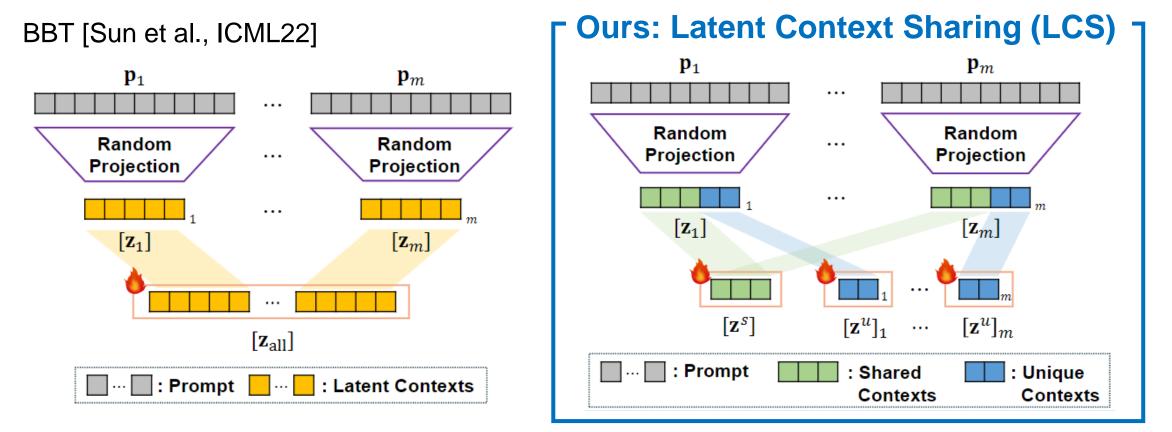

 \rightarrow Inapplicable for black-box models.

We address a novel problem of selective forgetting for black-box models.

We optimize the textual prompt to decrease the accuracy of specified classes through derivativefree optimization, because the gradients of the loss are unavailable in black-box models.


We optimize lower-dimensional latent contexts instead of optimizing contexts for the textual prompt directly to mitigate high-dimensional optimization.

BBT [Sun et al., ICML22] optimizes a lower-dimensional latent context instead of directly optimizing textual prompt to mitigate high dimensionality.


We found that the effectiveness of context parametrization through BBT is limited for Black-Box Forgetting.

BBT [Sun et al., ICML22]

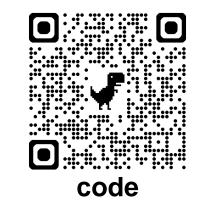
We propose Latent Context Sharing (LCS) for more effective context parametrization.

In LCS, a latent context is composed of **unique** components and **common** components among multiple latent contexts, and each component is optimized independently.

Experiments

Our method outperforms the reasonable baselines on all the datasets.

Table 1: Comparisons with the baselines. The best value is shown in bold. BBT [Sun et al., 2022b] and CBBT (w/o adapter) [Guo et al., 2023] are the reasonable baselines as these are for black-box prompt tuning. CoOp [Zhou et al., 2022b] is a white-box method and is included for a reference. Performance is evaluated using the three metrics: the error Err_{for} for the classes to be forgotten, the accuracy Acc_{mem} for the classes to be memorized, the harmonic mean H of Err_{for} and Acc_{mem} . Higher values mean better performance.


Method	CIFAR-10			CIFAR-100		
	$H\uparrow$	$Err_{\rm for}$ \uparrow	$Acc_{ m mem}\uparrow$	$H\uparrow$	$Err_{\rm for}$ \uparrow	$Acc_{ m mem}$ \uparrow
Zero-Shot CLIP	15.30	8.37	89.05	42.14	31.17	65.03
BBT	$85.69_{\pm 0.02}$	$79.31_{\pm 0.03}$	$93.19_{\pm 0.01}$	$78.36_{\pm 0.01}$	$87.30_{\pm 0.01}$	$71.09_{\pm 0.00}$
CBBT	93.48 ± 0.02	$90.99_{\pm 0.04}$	96.11 ±0.00	73.20 ± 0.00	72.69 ± 0.01	$73.72_{\pm 0.00}$
Ours (w/o LCS)	$72.37_{\pm 0.13}$	$58.57_{\pm 0.17}$	$94.68_{\pm 0.01}$	$79.38_{\pm 0.02}$	$89.17_{\pm 0.03}$	$71.52_{\pm 0.01}$
Ours	95.07 _{±0.01}	96.10 ±0.02	$94.06_{\pm 0.01}$	80.99 ±0.01	$93.37_{\pm 0.02}$	$71.52_{\pm 0.01}$
CoOp (White-Box)	$96.49_{\pm 0.00}$	$96.95_{\pm 0.01}$	$96.04_{\pm 0.00}$	$\bar{82.22}_{\pm 0.00}$	$99.81_{\pm 0.00}$	$69.90_{\pm 0.01}$
Method	С	UB-200-201	1		ImageNet30	
Method	C <i>H</i> ↑	$\frac{\text{UB-200-201}}{Err_{\text{for}}\uparrow}$	$\frac{1}{Acc_{\mathrm{mem}}\uparrow}$	$H\uparrow$	<u> </u>	
Method Zero-Shot CLIP					<u> </u>	
	$H\uparrow$	$Err_{\mathrm{for}} \uparrow$	Acc _{mem} ↑ 46.41	$H\uparrow$	$\frac{Err_{\rm for}}{1.17}$	$\mathit{Acc}_{\mathrm{mem}}$ \uparrow
Zero-Shot CLIP	<i>H</i> ↑ 46.30	$\frac{Err_{\rm for}\uparrow}{46.20}$	$\frac{Acc_{\rm mem}\uparrow}{46.41}$ $43.85_{\pm 0.01}$	$\begin{array}{c} H\uparrow\\ 2.31 \end{array}$	$Err_{for} \uparrow$ 1.17 90.17 _{±0.08}	$\frac{Acc_{\rm mem}\uparrow}{98.00}$
Zero-Shot CLIP BBT	$H\uparrow 46.30 \\ 58.75{\pm}0.01$		$\begin{array}{c} Acc_{\rm mem} \uparrow \\ \hline 46.41 \\ 43.85_{\pm 0.01} \\ 46.33_{\pm 0.01} \end{array}$	$ \begin{array}{r} H \uparrow \\ 2.31 \\ 94.22_{\pm 0.05} \end{array} $	$Err_{for} \uparrow \\ 1.17 \\ 90.17_{\pm 0.08} \\ 79.69_{\pm 0.12}$	$\begin{array}{c} Acc_{\rm mem} \uparrow \\ 98.00 \\ 99.06_{\pm 0.01} \\ \textbf{99.32}_{\pm 0.02} \end{array}$
Zero-Shot CLIP BBT CBBT	$H\uparrow 46.30 \\ 58.75{\pm}0.01 \\ 56.84{\pm}0.01$	$\begin{array}{c} Err_{\text{for}} \uparrow \\ 46.20 \\ 88.98_{\pm 0.04} \\ 73.52_{\pm 0.02} \end{array}$	$\begin{array}{c} Acc_{\rm mem} \uparrow \\ \hline 46.41 \\ 43.85_{\pm 0.01} \\ 46.33_{\pm 0.01} \\ 44.69_{\pm 0.01} \end{array}$	$\begin{array}{r} H\uparrow\\ 2.31\\ 94.22{\scriptstyle\pm 0.05}\\ 87.88{\scriptstyle\pm 0.08}\end{array}$	$\begin{array}{r} \hline Err_{\text{for}} \uparrow \\ 1.17 \\ 90.17_{\pm 0.08} \\ 79.69_{\pm 0.12} \\ 92.19_{\pm 0.03} \end{array}$	$\begin{array}{c} Acc_{\rm mem} \uparrow \\ 98.00 \\ 99.06_{\pm 0.01} \\ \textbf{99.32}_{\pm 0.02} \\ 98.59_{\pm 0.01} \end{array}$

Conclusion

- We proposed **Black-Box Forgetting**, a novel problem of selective forgetting for black-box models.
- We introduced Latent Context Sharing (LCS), an efficient and effective parametrization method of prompt, which is suitable for derivative-free optimization.
- Experimental results demonstrated that our method outperforms the reasonable baselines.

Thank you!

