

EEGPT: Pretrained Transformer for Universal and Reliable Representation of EEG Signals

Guangyu Wang, Wenchao Liu, Yuhong He, Cong Xu, Lin Ma, Haifeng Li*

Faculty of Computing, HIT

2024.11.12

Background

Electroencephalogram (EEG) data analysis faces numerous challenges, specifically:

- Low signal-to-noise
- High inter-subject variability
- Inherently task-dependent variations
- Channel mismatch

We introduces the **EEG Pretrained Transformer (EEGPT)**, a novel, universal model with over 10 million parameters. By training on a wide-ranging dataset, model universality is enhanced. Improvements to the model structure increase its compatibility even with missing channels and enhance the quality of representations.

> Method

Patchify & Local spatio-temporal embedding.

MSE Loss \mathcal{L}_R Transformer $\overline{\mathcal{M}}$ Reconstructed EEG Reconstructor skip pos₂ pos₃ pos₄ pos₅ pos₆ connection spatio-temporal pred₁ pred₂ pred₃ pred₄ pred₅ pred₆ representation alignment Select MSE Loss Prediction \mathcal{L}_A Predictor Encoded Tokens Encoder Momentum Encoder $e_1 e_2$ Embedding Embedding Transformer chanr unmasked masked Summary Tokens \mathcal{M} Patched EEG

The EEGPT Structure for Pretraining.

- **Patchify** the input EEG signal as $p_{i,j}$ through masking 50% time and 80% channel patches, splitting into the \mathcal{M} part and the $\overline{\mathcal{M}}$ part.
- **Embedding** $p_{i,j}$ to $token_{i,j}$ by local spatio-temporal embedding.
- **Encoder** extracts feature enc_j consisting of $\{e_i\}_{i=1}^S$ for each time *j* in the \mathcal{M} part.
- **Predictor** predicts *pred_i*, aligning with the Momentum Encoder output *menc_i*.
- **Reconstructor** generates $rec_{i,j}$ to reconstruct the EEG signal in the $\overline{\mathcal{M}}$ part.

The EEGPT Structure for Pretraining.

Based on the masked autoencoder, we introduces a **spatio-temporal representation alignment** to explicitly represent z, changing target function from:

$$\min_{\theta,\phi} \mathop{\mathbb{E}}_{x\sim\mathcal{D}} \mathcal{H}(d_{\phi}(z), x \odot (1-M)), z = f_{\theta}(x \odot M)$$

to:

$$\min_{\substack{\theta,\phi \ x \sim D}} \mathbb{E}_{\mathcal{H}} \mathcal{H}(d_{\phi}(z), x \odot (1 - M)) + \mathcal{H}(z, f_{\theta}(x)), z = f_{\theta}(x \odot M)$$

$$\mathcal{L}_{R} \qquad \qquad \mathcal{L}_{A}$$

Where **M** is mask matrix, \mathcal{H} is similarity measure, and f_{θ} , d_{ϕ} are the encoder and decoder with parameters θ and ϕ , respectively. This method results in improved encoding quality and generalization.

> Experiments

Comparative Study

Datasets	Methods	Balanced Accuracy	Cohen's Kappa Weighted F1 / AUROC	
BCIC-2A	BENDR	0.4899 ± 0.0070	0.3199±0.0094	0.4836±0.0076
	BIOT	0.4590 ± 0.0196	0.2787±0.0261	0.4282 ± 0.0289
	LaBraM	0.5613±0.0052	0.4151±0.0069	0.5520 ± 0.0052
	Ours	0.5846±0.0070	0.4462±0.0094	0.5715±0.0051
BCIC-2B	BENDR	0.7067±0.0011	0.4131±0.0022	0.7854±0.0029
	BIOT	0.6409 ± 0.0118	0.2817±0.0236	0.7095 ± 0.0141
	LaBraM	0.6851±0.0063	0.3703±0.0125	0.7576±0.0067
	Ours	0.7212±0.0019	0.4426±0.0037	0.8059±0.0032
Sleep-EDFx	BENDR	0.6655±0.0043	0.6659 ± 0.0043	0.7507±0.0029
	BIOT	0.6622±0.0013	0.6461 ± 0.0017	0.7415 ± 0.0010
	LaBraM	0.6771±0.0022	0.6710 ± 0.0006	0.7592 ± 0.0005
	Ours	0.6917±0.0069	0.6857±0.0019	0.7654±0.0023
KaggleERN	BENDR	0.5672±0.0020	0.1461±0.0037	0.6030±0.0044
	BIOT	0.5118±0.0089	0.0297 ± 0.0224	0.5495±0.0167
	LaBraM	0.5439 ± 0.0029	0.0944 ± 0.0066	0.5693 ± 0.0052
	Ours	0.5837±0.0064	0.1882±0.0110	0.6621±0.0096
PhysioP300	BENDR	0.6114±0.0118	0.2227±0.0237	0.6588±0.0163
	BIOT	0.5485 ± 0.0325	0.0968 ± 0.0647	0.5308±0.0333
	LaBraM	0.6477±0.0110	0.2935±0.0227	0.7068 ± 0.0134
	Ours	0.6502±0.0063	0.2999±0.0139	0.7168±0.0051

Comparative experiments.

Linear

Encoder (Frozen)

Linear-probing method.

In our comparative study, our EEGPT model outperformed BENDR, BIOT, and LaBraM across various EEG datasets. Notably, EEGPT showed significant accuracy gains on motor imagery (BCIC-2A: +9.4%, BCIC-2B: +1.5%) and sleep stage detection (Sleep-EDFx: +2.6%) over BENDR. Despite using only an additional linear layer for fine-tuning, our model's enhanced feature extraction capability was evident. It also surpassed BIOT and LaBraM in ERP-type tasks on KaggleERN (+7.2% over BIOT, +2.6% over BENDR) and PhysioP300 (+10.2% over BIOT, +3.9% over BENDR). Our model's universal feature learning across paradigms addresses key challenges in EEG channel adaptability and representation quality, offering a robust solution for EEG data analysis.

Experiments

Ablation Study

Variants	\mathcal{L}_A	\mathcal{L}_R	BCIC-2A-BAC	BCIC-2B-AUROC	KaggleERN-AUROC
A: w/o \mathcal{L}_A	37.13	0.57	0.5287 ± 0.0086	0.7264 ± 0.0381	0.5752±0.0164
B: w/o LN	0.15	0.002	0.5567 ± 0.0088	0.7920 ± 0.0012	0.5891±0.0227
C: w/o skip	0.12	0.56	0.5796 ± 0.0011	0.7702 ± 0.0122	0.6356±0.0296
D: with all	0.24	0.56	0.5846±0.0070	0.8059 ± 0.0032	0.6621±0.0096

Ablation experiments.

The EEGPT Structure for Pretraining.

In our ablation study (as above table), we found that:

- A: Removing alignment loss (\mathcal{L}_A) led to a **6-9% drop** in downstream task performance, despite similar reconstruction loss.
- B: Removing layer normalization (LN) increased vulnerability to extreme values and covariate shift, reducing downstream performance by 3-7%.
- C: Without skip connection, had lower alignment loss but 1-3% lower downstream task performance.

These findings underscore the effectiveness of our dual self-supervised approach, enhancing EEG representation quality through spatiotemporal alignment.

> Experiments

Scaling Study

The impact of scaling model size on performance of BCIC-2A.

We explored the impact of model size and summary tokens on pretraining loss and downstream task performance using 8 model variants. Results from the **BCIC-2A** dataset showed that **as model size and summary tokens increased, reconstruction loss decreased, and task accuracy improved.**

Visualization

The illustration of the model's learned channel relationships after pretraining.

We illustrates the model's learned channel relationships after pretraining.

Left figure depicts **channel similarities (cosine similarity > 0.5)** with clusters indicating positional relationships.

Right figure maps actual electrode positions, showing higher similarity between close channels (solid lines for >0.3, dashed for 0.1-0.3) and notable similarity between distant, opposite electrodes.

Thanks

Please refer to our full paper for detailed methodologies and results. The code for this paper is available at https://github.com/BINE022/EEGPT

Guangyu Wang wangguangyu@stu.hit.edu.cn