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Managing such large-scale graphs often demands complex GNN architectures, 
resulting in significant training efforts and heightened memory requirements2.
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p Graph Neural Networks (GNNs)
� GNNs specialise in capturing the inherent topological structure of irregular 

graph data (e.g., molecules and social networks).

Background: GNNs
Background

p Challenges in GNNs
� The scale of graph data has dramatically increased, often necessitating costly 

human efforts for data annotation.
For example, Twitter user graph, comprising over 288 million nodes and an 
estimated 208 edges per user1.

� The model size of GNNs has grown substantially, leading to computationally 
intensive training.

[1] A. Ching, et al. One trillion edges: Graph processing at facebook-scale. Proceedings of the VLDB Endowment (2015)
[2] X. Liu, et al. Survey on graph neural network acceleration: An algorithmic perspective. IJCAI (2022) 
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p Graph-Centric Model Reuse (GNN Reuse)
� Goal: Reuse Pre-trained GNNs to:

q Enhance Performance; 
q Minimise Training Effort;
q Reduce Human Annotation Effort; 
q Improve Inference Speed;
q …

Background: GNN Reuse
Background

p Challenges in GNNs
� The scale of graph data has dramatically increased, often necessitating costly human 

efforts for data annotation.
� The model size of GNNs has grown substantially, leading to computationally intensive 

training.
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Background: Existing GNN Reuse Works 
Background

p Single-GNN Reuse
� Graph-Centric Knowledge Distillation3: 

p Multi-GNN Reuse
� Graph-Centric Knowledge Amalgamation4: 

A favourable student GNN is learned from a single pre-trained teacher.

Learn a single, compact student GNN that integrates the diverse expertise of 
multiple pre-trained teacher GNNs, without accessing human annotations.

[3] Y. Yang, et al. Distilling knowledge from graph convolutional networks. In CVPR, 2020.
[4] Y. Jing, et al. Amalgamating knowledge from heterogeneous graph neural networks. In CVPR, 2021
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Motivations and Problem Definition
Motivations 
& Problem 
Definition

p Motivations
� Existing graph-centric model reuse methods inherently limited by the resource-

intensive nature;
� Requiring the re-training/fine-tuning of a student GNN to transfer knowledge 

from existing GNNs.

Ours:

p Problem Definition: Our Deep Graph Mating (GRAMA) scheme
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Motivations and Problem Definition
Motivations 
& Problem 
Definition

p Problem Definition: Our Deep Graph Mating (GRAMA) scheme
� GRAMA advances beyond existing methods by eliminating the need for any 

training or label dependency, paving the way for more widespread and 
versatile model reuse applications. 

p Problem Domain
� Given the novelty and complexity of GRAMA, our initial investigation in this paper 

is confined to scenarios where pre-trained GNNs possess identical 
architectures yet are trained on separate datasets, termed as homogenous 
GRAMA.

� We leave heterogeneous GRAMA as a future work.
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Vanilla Methodologies
Vanilla 

Methods & 
Pre-analysis

p Vanilla Methodologies for GRAMA
� We develop two vanilla approaches for GRAMA.

q Vanilla Parameter Interpolation (VPI):
A straightforward linear interpolation of weights from two pre-trained 
GNNs: 𝑊(ℓ) = 𝛼𝑊'

(ℓ) + (1 − 𝛼)𝑊+
(ℓ).

Drawback: VPI requires the pre-trained models to share a portion of their 
training trajectory and remain sufficiently close in the parameter space, typically 
achieved by fine-tuning from the same initial model. 
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Vanilla Methodologies
Vanilla 

Methods & 
Pre-analysis

p Vanilla Methodologies for GRAMA
� We develop two vanilla approaches for GRAMA.

q Vanilla Parameter Interpolation (VPI):
A straightforward linear interpolation of weights from two pre-trained 
GNNs: 𝑊(ℓ) = 𝛼𝑊'

(ℓ) + (1 − 𝛼)𝑊+
(ℓ).

Drawback: VPI requires the pre-trained models to share a portion of their 
training trajectory and remain sufficiently close in the parameter space, typically 
achieved by fine-tuning from the same initial model. 

q Vanilla Alignment Prior to Interpolation (VAPI):
Aligning the neurons between pre-trained models by permuting parameter 
matrices with permutation matrices 𝑃(ℓ) before performing linear interpolation: 
𝑊(ℓ) = 𝛼𝑊'

(ℓ) + (1 − 𝛼)𝑃(ℓ)𝑊+
(ℓ)(𝑃(ℓ-.))/. 
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Challenge Analysis
Vanilla 

Methods & 
Pre-analysis

p Initial Empirical Observation:
� Both vanilla methodologies (even VAPI) yielded unfavourable results 

for our GRAMA task.
� Why?

q Our theoretical analysis shows:
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Proposed Approach
Proposed 
Approach

p Aim of the Proposed Approach
� We propose a Dual-Message Coordination and Calibration 

(DuMCC) methodology.
� DuMCC is specifically designed to harness the unique topological 

features of input graphs for achieving GRAMA without relying on 
human annotations.
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Proposed Approach
Proposed 
Approach

p 1st Part of the Proposed Approach: PMC
� The proposed DuMCC is composed of two strategic schemes. 
� In particular, the first Parent Message Coordination (PMC) scheme 

effectively integrates topological information by deriving optimal 
permutation matrices from layer-specific aggregation results.

� PMC is based on the rationale that aggregated messages inherently 
encapsulate essential graph topologies.

p Drawback of PMC
� Empirically, the child GNN, derived from the proposed PMC, exhibits a 

reduction in the variance of node embeddings.
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Proposed Approach
Proposed 
Approach

p Drawback of PMC
� Empirically, the child GNN, derived from the proposed PMC, exhibits a 

reduction in the variance of node embeddings.
� Why?

q Theoretical analysis proves that:
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Proposed Approach
Proposed 
Approach

p 2nd Part of the Proposed Approach: CMC
� To mitigate the over-smoothing issue identified in the 1st part of our method 

PMC, we propose a Child Message Calibration (CMC) scheme.
� CMC is designed to refine the message statistics of the obtained child 

GNN without the need for re-training or ground-truth labels.
� Central to CMC is our Learning-Free Message Normalisation (LFNorm) 

layer that reduces the risk of over-smoothing in child GNNs by preserving 
essential topological statistics from the parent models.
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Experiments: Implementation
Experiments

p Implementation Details
� We adopt the dataset partition strategy widely used in model merging 

within the Euclidean domain;
� Each dataset is randomly split into two disjoint subsets: the first subset 

comprises 20% of the data with odd labels and 80% with even labels, while 
the second subset is arranged vice versa;

� We set the interpolation factor to 0.5 for all experiments to maintain a 
balanced representation of central tendencies from both pre-trained parent 
models.
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Experiments: Results
Experiments
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Conclusions and Limitations
Conclusions

p In this work, we explore a novel GRAMA task for learning-free GNN reuse.

p Uniquely, GRAMA establishes the first paradigm in GNN reuse that 
operates entirely without re-training or fine-tuning, while also eliminating the 
need for ground-truth labels.

p Despite its strengths, the proposed method is primarily designed for 
homogeneous GRAMA.

p Our approach does not support cross-architecture heterogeneous GRAMA, 
where parent models have different architectures, such as a combination of 
GCN and GraphSAGE, an issue we plan to explore in our future work. 
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