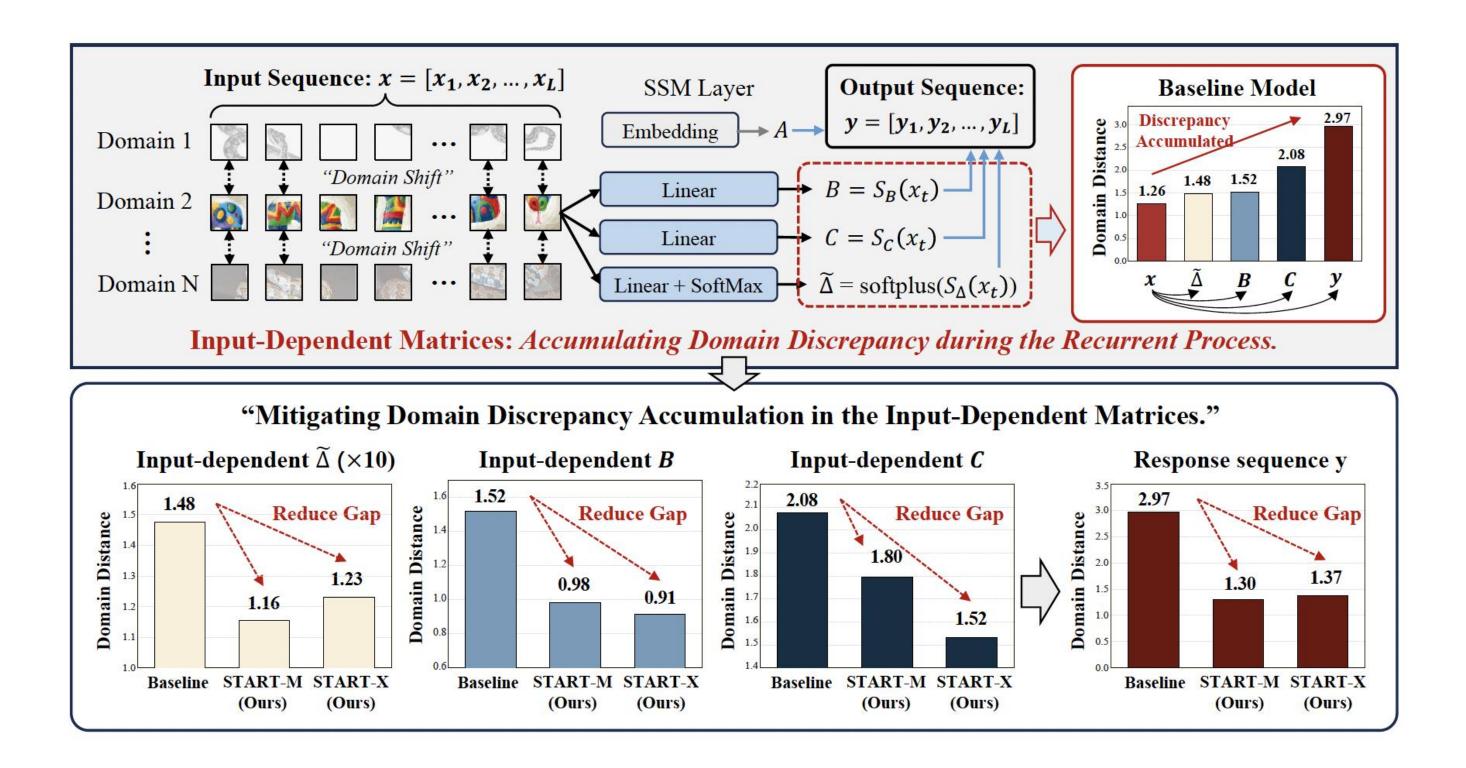


START: A Generalized State Space Model with Saliency-Driven Token-Aware Transformation

Poster ID: 93769

Jintao Guo¹ Lei Qi^{2*} Yinghuan Shi^{1*} Yang Gao^{1†} ¹ Nanjing University ² Southeast University guojintao@smail.nju.edu.cn, qilei@seu.edu.cn, {syh, gaoy}@nju.edu.cn

Summary of highlights



(2) A novel SSM-based architecture with saliency-driven token-aware transformation as a competitive alternative to CNNs and ViTs for DG, which performs excellent generalization ability with efficient linear complexity.

(3) For saliency-driven token-aware transformation, we explore two variants to identify and perturb salient tokens in feature sequences, effectively reducing domain-specific information within the input-dependent matrices of Mamba.

Theorem 1 (Generalization Risk Bound). With the previous setting and assumptions, let D_S^i and D_T be two sets with M samples independently drawn from \mathcal{D}_S^n and \mathcal{D}_T , respectively. For any $\delta \in (0, 1)$ with probablity of at least $1 - \delta$, for all $h \in \mathcal{H}$, the following inequality holds:

$$R_{D_T}(h) \le \sum_{n=1}^{N} \pi_n R_{D_S}^n(h) + d_{\text{To-MMD}}(D_T, \bar{D}_T) + \sup_{i,j \in [N]} \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \frac{1}{N} \sum_{i=1}^{N} \sum_{i=1}^{$$

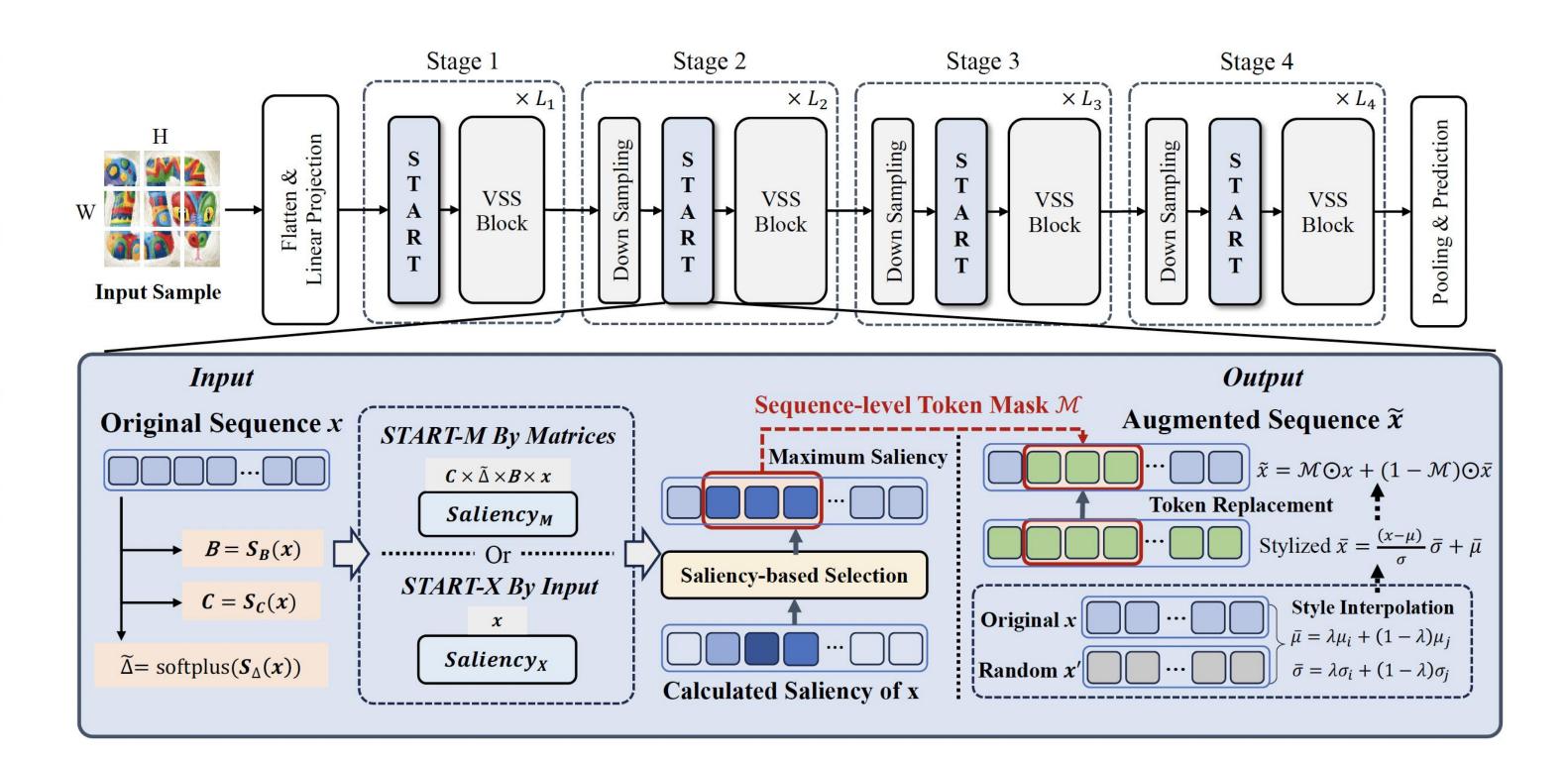
where $\lambda_{\pi} = \frac{1}{M} \left(\sum_{n=1}^{N} \pi_n \mathbb{E}_{x \sim D_S^n} \left[\sqrt{tr(K_{D_S^n})} + \mathbb{E}_{x \sim D_T} \left[\sqrt{tr(K_{D_T})} \right] \right) + \sqrt{\frac{\log(2/\epsilon)}{2M}}$, and σ is the minimum combined error of the ideal hypothesis h^* on both D_S and D_T . Let $\kappa_T = d_{To-MMD}(D_T, \overline{D}_T)$ and $\kappa_S = \sup_{i,j \in [N]} d_{To-MMD}(D_S^i, D_S^j)$, respectively.

Proposion 1 (Accumulation of Domain Discrepancy). Given two distinct domains D_S and D_T , the token-level domain distance $d_{To-MMD}(D_S, D_T)$ depends on $d_{C\tilde{\Delta}Bx}(\bar{x}_i^S, \bar{x}_i^T)$ and $d_{\tilde{\Delta}}(\bar{x}_i^S, \bar{x}_i^T)$ for the *i-th token. For the entire recurrent process, domain-specific information encoded in* S_{Δ} *,* S_{C} *, and* S_{B} will accumulate, thereby amplifying domain discrepancy.

Proposion 2 (Mitigating Domain Discrepancy Accumulation). Perturbing domain-specific features in tokens focused on by S_{Δ} , S_C , and S_B can enhance their learning of domain-invariant features, thus effectively mitigating the accumulation issue in these input-dependent matrices.

(1) A theoretical investigation into generalization ability of Mamba models, revealing that input-dependent matrices in Mamba accumulate domain-specific features during the recurrent process, thus hindering model's generalizability.

 $d_{\text{To-MMD}}(D_S^i, D_S^j) + 2\lambda_{\pi} + \sigma, \quad (5)$



START: A Generalized State Space Model with Saliency-Driven Token-Aware Transformation

Poster ID: 93769

Jintao Guo¹ Lei Qi^{2*} Yinghuan Shi^{1*} Yang Gao^{1†} ¹ Nanjing University ² Southeast University guojintao@smail.nju.edu.cn, qilei@seu.edu.cn, {syh, gaoy}@nju.edu.cn

Backgrounds

Domain Generalization (DG)

training.

Problems of existing DG studies

- input length.

• Existing CNN-based DG works inevitably tend to learn local texture information due to limited receptive fields of local convolutions, leading to overfitting to source domains.

• Recent works have introduced ViTs as the backbone for DG, utilizing global receptive field of selfattention to mitigate local texture bias, but suffer from high complexity that increases quadratically with

• Learn a model from source domains that performs well on arbitrary unseen target domains without re-

Motivation

State Space Models (SSMs)

Whether the Mamba model can achieve excellent performance for DG tasks?

Represented by Mamba, the advanced state space models (SSMs) have achieved remarkable performance on various supervised learning tasks.

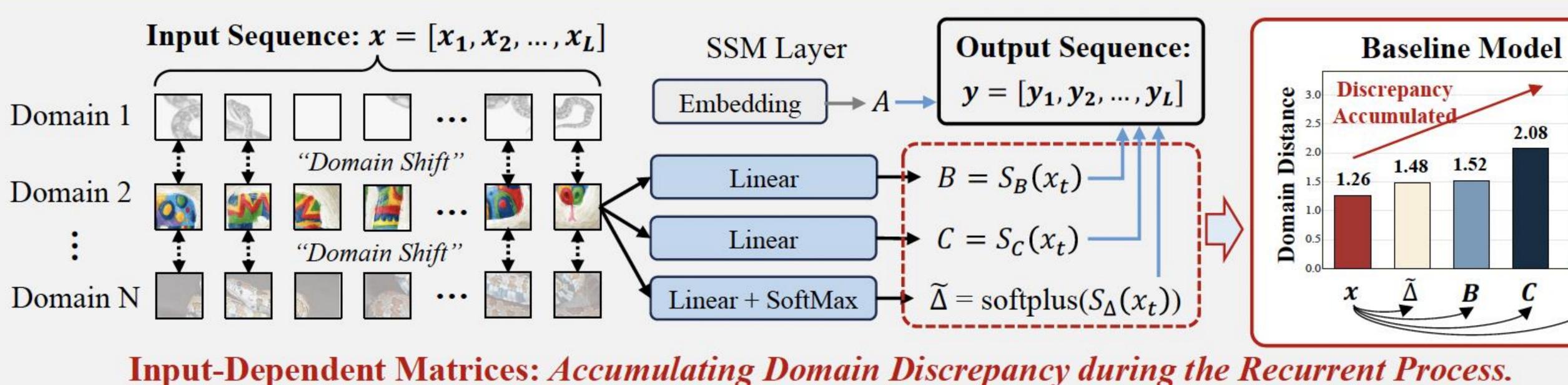
• SSMs rely on input-dependent matrixes to selectively models token dependencies in input sequences in a compressed state space, which achieve linear complexity in sequence length.

• Few existing works have analyzed the generalization ability of Mamba under domain shift.

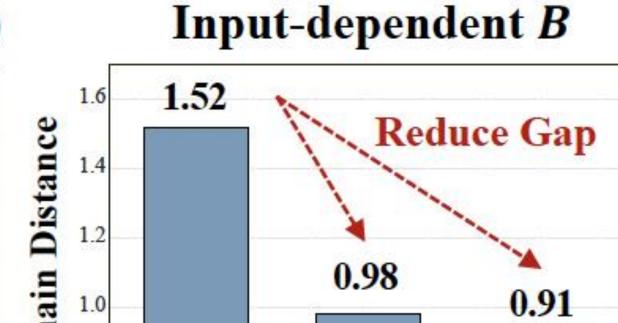
Motivation Whether the Mamba model can achieve excellent performance for DG tasks?

• Empirical evidence reveals that the key input-dependent matrixes in Mamba could accumulate and amplify domain-specific features during training, which exacerbates overfitting issue of the model to source domains.

a 1.5 Dista **uie und** 1.1



Baseline

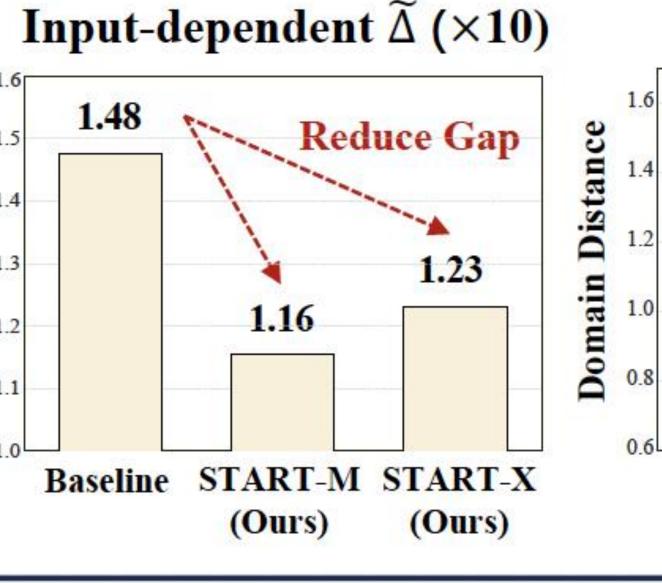


0.91

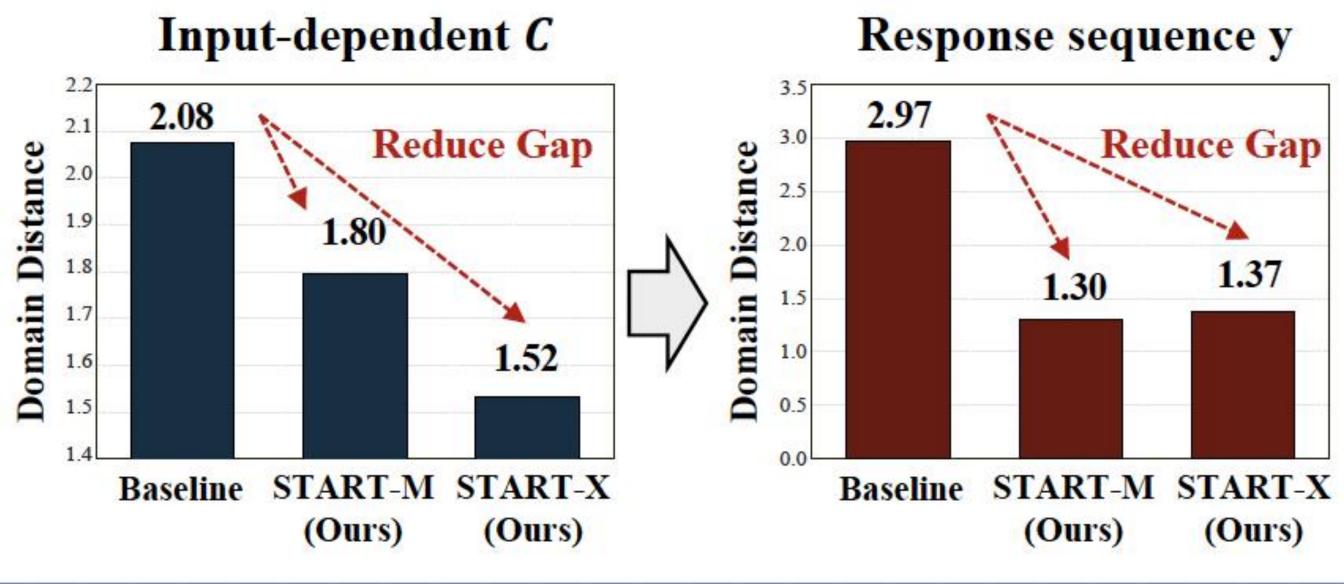
(Ours)

START-M START-X

(Ours)



"Mitigating Domain Discrepancy Accumulation in the Input-Dependent Matrices."





Theoretically Analysis

We theoretically explore the generalization error bound of Mamba, proving that perturbing the domainspecific features within the input-dependent matrices of Mamba can effectively diminish the upper bound of the model's generalization risk.

Theorem 1 (Generalization Risk Bound). With the previous setting and assumptions, let D_S^i and D_T be two sets with M samples independently drawn from \mathcal{D}_S^n and \mathcal{D}_T , respectively. For any $\delta \in (0, 1)$ with probablity of at least $1 - \delta$, for all $h \in \mathcal{H}$, the following inequality holds:

 $R_{D_{T}}(h) \leq \sum^{N} \pi_{n} R_{D_{S}}^{n}(h) + d_{\text{To-MMD}}(D_{T}, \bar{D}_{T}) + \sup_{\text{To-MMD}} d_{\text{To-MMD}}(D_{S}^{i}, D_{S}^{j}) + 2\lambda_{\pi} + \sigma, \quad (5)$ n=1

where $\lambda_{\pi} = \frac{1}{M} \left(\sum_{n=1}^{N} \pi_n \mathbb{E}_{x \sim D_S^n} \left[\sqrt{tr(K_{D_S^n})} + \mathbb{E}_{x \sim D_T} \left[\sqrt{tr(K_{D_T})} \right] \right) + \sqrt{\frac{\log(2/\epsilon)}{2M}}$, and σ is the minimum combined error of the ideal hypothesis h^* on both D_S and D_T . Let $\kappa_T = d_{To-MMD}(D_T, \overline{D}_T)$ and $\kappa_S = \sup_{i,j \in [N]} d_{To-MMD}(D_S^i, D_S^j)$, respectively.

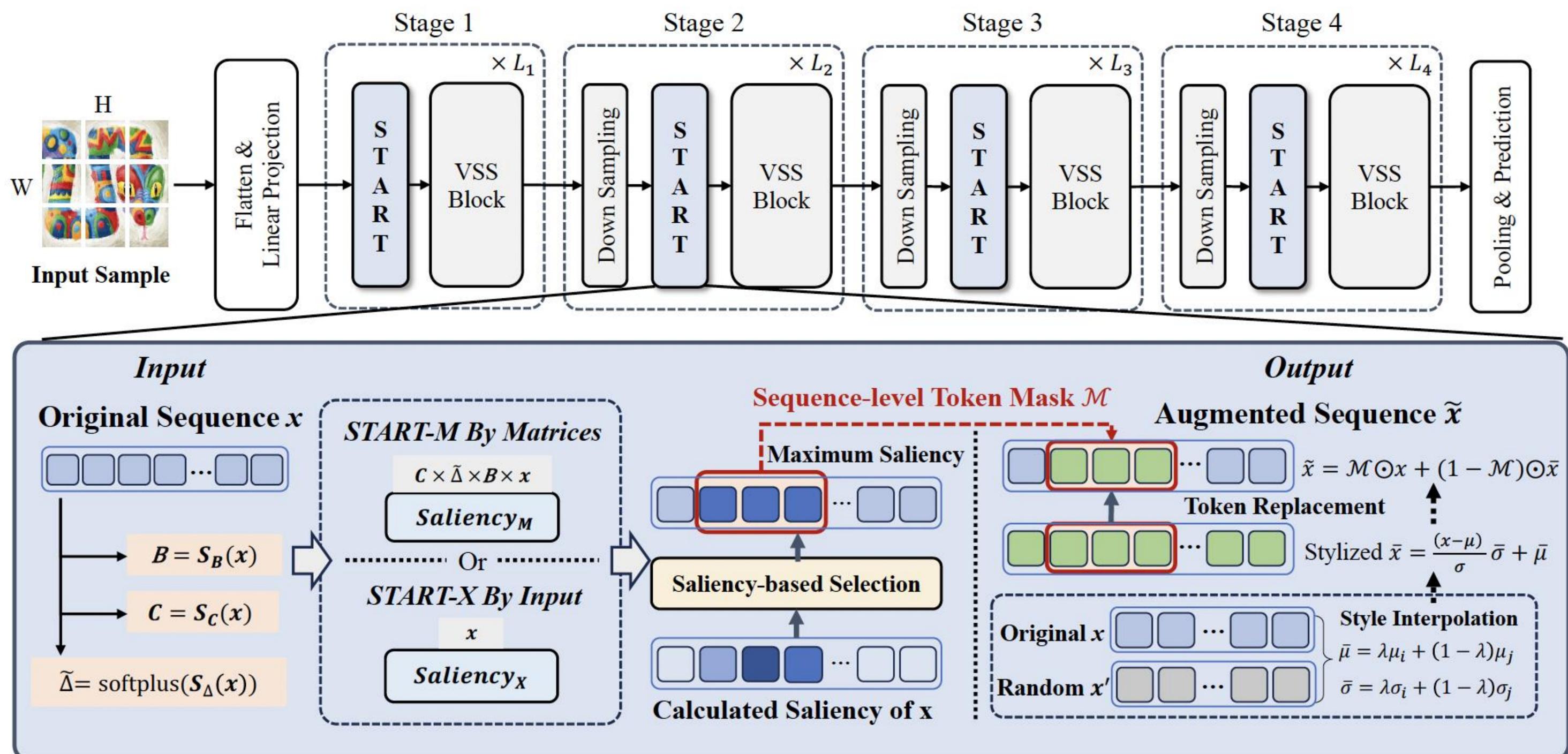
Proposion 1 (Accumulation of Domain Discrepancy). Given two distinct domains D_S and D_T , the token-level domain distance $d_{To-MMD}(D_S, D_T)$ depends on $d_{C\tilde{\Delta}Bx}(\bar{x}_i^S, \bar{x}_i^T)$ and $d_{\tilde{\Delta}}(\bar{x}_i^S, \bar{x}_i^T)$ for the *i-th token.* For the entire recurrent process, domain-specific information encoded in S_{Δ} , S_{C} , and S_{B} will accumulate, thereby amplifying domain discrepancy.

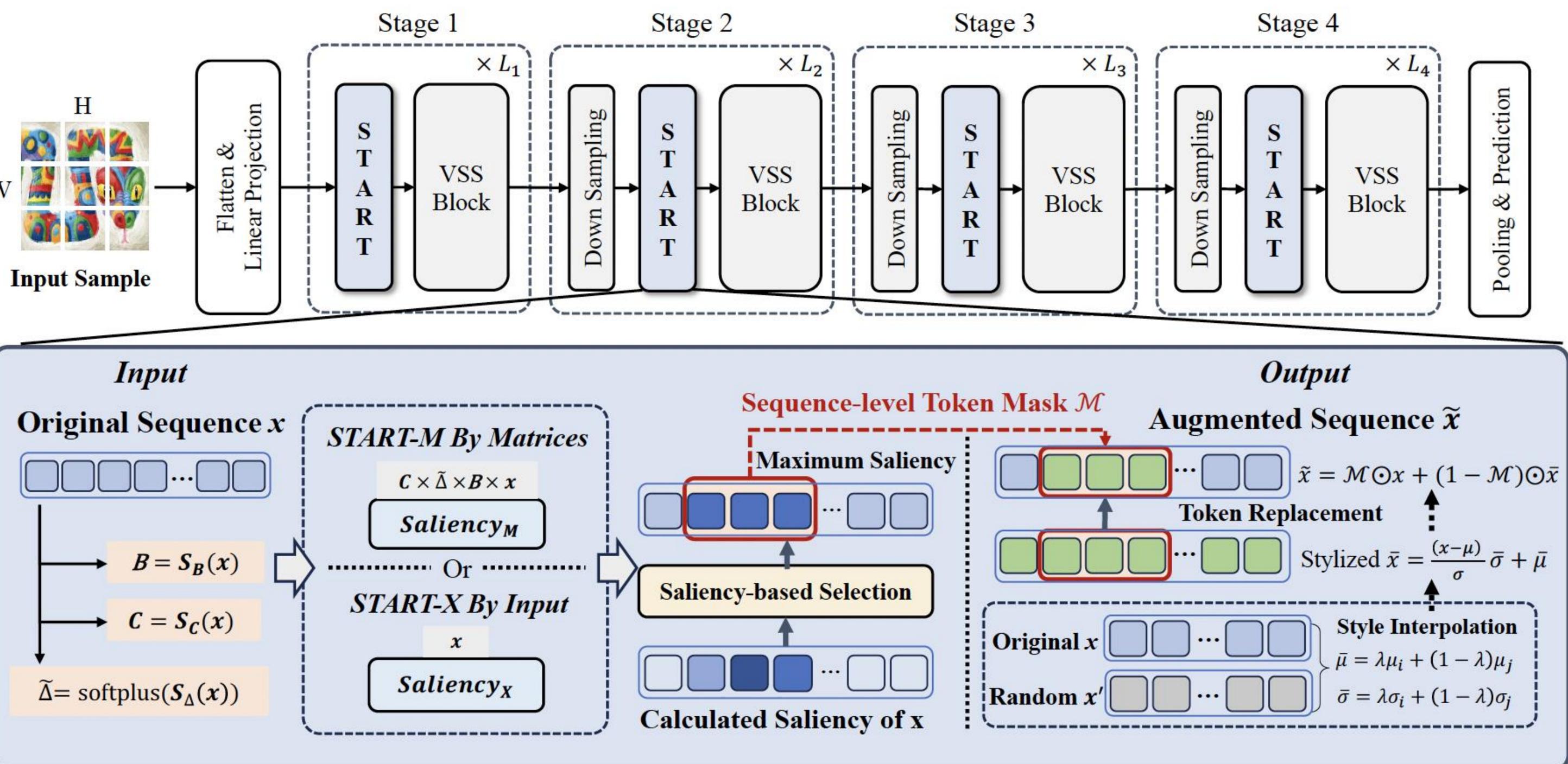
Proposion 2 (Mitigating Domain Discrepancy Accumulation). *Perturbing domain-specific* features in tokens focused on by S_{Δ} , S_C , and S_B can enhance their learning of domain-invariant features, thus effectively mitigating the accumulation issue in these input-dependent matrices.

 $i, j \in [N]$

Methodology

dependent matrixes.





Based on the theoretically analysis, we propose a novel Saliency-driven Token-AwaRe Transformation paradigm (START in short), which aims to explicitly suppress domain-related features within the input-

Methodology

- input-dependent matrices.
- sequences.

START-M: based on input-dependent matrices $Saliency_M(x_i) = S_C(x_i) \operatorname{softmax}(S_{\Delta}(x_i)) S_B(x_i) x_i$

Diversify Style Information:

Augment Saliency Tokens:

• START incorporates a saliency-driven token selection scheme to perturb the prominent regions of

• We propose two variants to identify and perturb tokens within salient regions, including START-M that determines saliency using input-dependent matrices, and START-X computing saliency based on input

$$\tilde{\mu} = \epsilon \mu(x) + (1 - \epsilon)\mu(x'), \quad \tilde{\sigma} = \epsilon \sigma(x) + (1 - \epsilon)\sigma(x)$$
$$\epsilon \sim Beta(0.1, 0.1), \quad \tilde{x} = \frac{x - \mu(x)}{\sigma(x)} \cdot \tilde{\mu} + \tilde{\sigma},$$

$$x_{aug}$$

START-X: based on input sequences $Saliency_X(x_i) = x_i$

 $= \mathcal{M}_S \odot x + (1 - \mathcal{M}_S) \odot \tilde{x},$

Experiments

START achieves SOTA performances on various DG datasets.

				PACS	5				Office-Ho	me	
Method	Params.	Art	Cartoon	Photo	Sketch	Avg.	Art	Clipart	Product	Real	Avg.
			CNI	N: ResNe	et-50						
DeepAll [65] (AAAI'20)	23M	84.70	80.80	97.20	79.30	85.50	61.30	52.40	75.80	76.60	66.50
PCL [66] (CVPR'22)	23M	90.20	83.90	98.10	82.60	88.70	67.30	59.90	78.70	80.70	71.60
EoA 67 (NeurIPS'22)	23M	90.50	83.40	98.00	82.50	88.60	69.10	59.80	79.50	81.50	72.50
EQRM [68] (NeurIPS'22)	23M	86.50	82.10	96.60	80.80	86.50	60.50	56.00	76.10	77.40	67.50
SAGM [69] (CVPR'23)	23M	87.40	80.20	98.00	80.80	86.60	65.40	57.00	78.00	80.00	70.10
iDAG [70] (ICCV'23)	23M	90.80	83.70	98.00	82.70	88.80	68.20	57.90	79.70	81.40	71.80
DomainDrop [60] (ICCV'23)	23M	89.82	84.22	98.02	85.98	89.51	67.33	60.39	79.05	80.22	71.75
CCFP [71] (ICCV'23)	23M	87.50	81.30	96.40	81.40	86.60	63.70	55.50	77.20	79.20	68.90
MADG [72] (NeurIPS'23)	23M	87.80	82.20	97.70	78.30	86.50	67.60	54.10	78.40	80.30	70.10
PGrad 73 (ICLR'23)	23M	87.60	79.10	97.40	76.30	85.10	64.70	56.00	77.40	78.90	69.30
AGFA [74] (ICLR'23)	23M	89.80	85.20	97.60	84.70	89.30	67.50	58.50	79.30	80.70	71.50
GMDG 75 (CVPR'24)	23M	84.70	81.70	97.50	80.50	85.60	68.90	56.20	79.90	82.00	70.70
			ViT-	based or	MLP-like	models					
MLP-B [76] (NeurIPS'21)	59M	85.00	77.86	94.43	65.72	80.75	63.45	56.31	77.81	79.76	69.33
SDViT 18 (ACCV'22)	22M	87.60	82.40	98.00	77.20	86.30	68.30	56.30	79.50	81.80	71.50
ResMLP-S [77] (TPAMI'22)	40M	85.50	78.63	97.07	72.64	83.46	62.42	51.94	75.40	77.21	66.74
ViP-S [78] (TPAMI'22)	25M	88.09	84.22	98.38	82.41	88.27	69.55	61.51	79.34	83.11	73.38
GMoE-S [19] (ICLR'23)	34M	89.40	83.90	99.10	74.50	86.70	69.30	58.00	79.80	82.60	72.40
SSM-based models											
DGMamba [54] (ACM MM'24)	22M	91.30	87.00	99.00	87.30	91.20	76.20	61.80	83.90	86.10	77.00
Strong Baseline [22]	22M	91.55	85.11	99.14	83.97	89.94±0.52	75.06	60.48	84.71	85.45	76.43 ± 0.15
START-M (Ours)	22M	93.29	87.56	99.14	87.07	91.77 ±0.40	75.15	62.04	85.31	85.84	77.09 ±0.16
START-X (Ours)	22M	92.76	87.43	99.22	87.46	91.72 ± 0.49	75.48	62.06	85.24	85.47	77.07 ± 0.07

Experiments

Method

Baseline [22]

w/o. Saliency Guide w/o. Token Selection

START-M (Ours) START-X (Ours)

START can effectively reduce START outperforms previous augmentation methods. domain gaps in input-dependent matrices.

Method	Art	Cartoon	Photo	Sketch	Avg.
Baseline [22]	91.55	85.11	99.14	83.97	89.94 ± 0.52
MixStyle [13]	92.05	86.55	98.90	86.35	$\begin{array}{c} 90.94 {\pm} 0.18 \\ 90.71 {\pm} 0.22 \\ 90.89 {\pm} 0.24 \end{array}$
DSU [14]	92.58	85.91	98.98	85.39	
ALOFT [15]	93.07	86.04	99.16	85.31	
START-M (Ours)	93.29	87.56	99.14	87.07	91.77 ±0.40
START-X (Ours)	92.76	87.43	99.22	87.46	91.72±0.49

Ablation studies of each components on multiple datasets.

			OfficeHo	me				FerraInco	ognita	
	Art	Clipart	Product	Real	Avg.	L100	L38	L43	L46	
	75.06	60.48	84.71	85.45	$76.43{\scriptstyle \pm 0.15}$	66.39	47.27	62.42	48.56	5
ded on	75.12 75.11	61.06 61.77	84.91 84.97	85.42 85.26	$76.63{\scriptstyle \pm 0.17} \\ 76.78{\scriptstyle \pm 0.07}$	69.49 68.97	49.10 49.19	62.70 62.87	47.92 48.74	5' 5'
	75.15 75.48	62.04 62.06	85.31 85.24	85.84 85.47	$\begin{array}{c} \textbf{77.09} {\pm 0.16} \\ \textbf{77.07} {\pm 0.07} \end{array}$	70.13 70.70	49.98 49.47	63.02 63.96	49.49 48.95	5 5

Terral	Inco	gni	ta
IUIIa		gm	uu

Method	$ ilde{\Delta}(\downarrow)$	B (↓)	C (↓)	Feat. (\downarrow)
Baseline [22]	1.48	1.52	2.08	2.97
MixStyle [13]	1.73	1.36	1.90	1.91
DSU [14]	1.38	1.28	2.18	1.59
ALOFT [15]	1.37	1.25	2.33	1.67
START-M (Ours)	1.16	0.98	1.80	1.30
START-X (Ours)	1.23	0.91	1.52	1.37

 56.16 ± 0.41

- 57.30 ± 0.07
- 57.44 ± 0.22
- 58.16 ± 0.79 58.27±0.75

Experiments

START introduces no additional inference time, has significantly fewer FLOPs but higher performance than CNNs.

Method

DeepAll [65] (AAA iDAG [70] (ICCV'23 iDAG [70] (ICCV'23]

GMoE-S [19] (ICLE GMoE-B [19] (ICLE ViP [78] (TPAMI'22) GFNet [88] (TPAMI'

DGMamba^[54] (A

Strong Baseline [2 START-M (Ours) START-X (Ours)

	Backbone	Params (M)	GFlops (G)	Time (ms)	
AI'20)	ResNet-50	23	8.26		
23)	ResNet-50	23	8.00	94	
23)	ResNet-101	41	15.00	495	
LR'23)	DeiT-S	34	5.00	136	
LR'23)	DeiT-B	133	19.00	361	
2)	ViP-S	25	13.84	_	
(I'23)	GFNet-H-Ti	13	4.10	_	
(ACM MM'24)	VMamba-T	31	5.00	233	
[22]	VMamba-T	22	5.68	252	
	VMamba-T	22	5.68	252	
	VMamba-T	22	5.68	252	

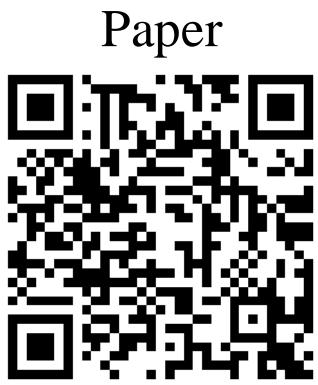
A	vg. (%)
	85.50 88.80 89.20
	88.10 89.20 88.27 87.76
	91.20
	89.94 91.77 91.72

Conclusion

> In this paper, we conduct a theoretical investigation into the generalization ability of the Mamba model, revealing that the input-dependent matrices in Mamba can accumulate domain-specific features during the recurrent process, thus hindering the model's generalizability.

> Based on theoretical analysis, we propose a novel SSM-based architecture with saliency-driven token-aware transformation as a competitive alternative to CNNs and ViTs for DG, which performs excellent generalization ability with efficient linear complexity.

> For saliency-driven token-aware transformation, we explore two variants to identify and perturb salient tokens in feature sequences, effectively reducing domain-specific information within the input-dependent matrices of Mamba.



Code

