NeurIPS 2024

Quality-Improved and Property-Preserved Polarimetric Imaging via Complementarily Fusing

Chu Zhou¹ Yixing Liu^{2,3} Chao Xu⁴ Boxin Shi^{2,3}

1National Institute of Informatics, Japan

2State Key Lab for Multimedia Info. Processing, School of CS, Peking University, China ³National Eng. Research Center of Visual Tech., School of CS, Peking University, China 4National Key Lab of General AI, School of IST, Peking University, China

- A polarization camera can capture a polarized snapshot in a single shot
	- The degree of polarization (DoP) and angle of polarization (AoP) can be directly computed from it
	- Useful for polarization-based vision applications

Polarimetric imaging: difficulties

appropriate exposure time

[Hu *et al*., OL 20]

Handling noisy polarized images

Low-light enhancement methods for polarized images: handling $L_{\alpha_{1,2,3,4}}$ only

Handling blurry polarized images

Deblurring methods for polarized images : handling $B_{\alpha_{1,2,3,4}}$ only

• Two-stage deblurring pipeline (PolDeblur) [Zhou *et al*., Arxiv 24]

- Instead of enhancing $L_{\alpha_{1,2,3,4}}$, another approach to obtain high-quality DoP and AoP is deblurring $B_{\alpha_{1,2,3,4}}$
	- The problem is highly ill-posed

How to reduce the ill-posedness?

Fusing a pair of noisy and blurry images 桑

- A pair of noisy and blurry images would provide complementary knowledge
	- Clear but noisy image Clean but blurry image Fusing them could produce clean and clear results

A fusing framework for polarized images

- $\mathbf{L}_{\alpha_{1,2,3,4}}$ and $\mathbf{B}_{\alpha_{1,2,3,4}}$ would also provide complementary knowledge
	- Need a specially designed fusing framework for polarized images that can simultaneously
		- improve the image quality
		- preserve the polarization properties
	- Formulating the fusing framework as maximizing a posteriori estimation

 $\argmax_{\alpha} f(\mathbf{I}_{\alpha_{1,2,3,4}} | \mathbf{L}_{\alpha_{1,2,3,4}}, \mathbf{B}_{\alpha_{1,2,3,4}}, \varphi)$ Ψ

• Implementing a fusing function f parameterized by Ψ

- Inputs:
	- noisy polarized images ${\color{MyRed}\textrm{L}_{\alpha_{1,2,3,4}}}$
	- blurry polarized images $B_{\alpha_{1,2,3,4}}$
- Output:
	- clean and clear polarized images $I_{\alpha_{1,2,3,4}}$

How to implement the fusing function?

- Denoting the unpolarized images as I
	- When placing a polarizer with polarizer angle α : I $_{\alpha} = \frac{1(1-p\cos(2(\alpha \theta)))}{2}$ 2 Malus' law
	- Reformulating the above equation into a polynomial form: $I_{\alpha} = \frac{S_0}{2} \frac{\cos(2\alpha)S_1}{2} \frac{\sin(2\alpha)S_2}{2}$

where $S_0 = I$, $S_1 = Ip\cos(2\theta)$, and $S_2 = Ip\sin(2\theta)$ are called the Stokes parameters

Stokes parameters • $S_{0,1,2}$ can be computed from $I_{\alpha_{1,2,3,4}}$ directly

- According to the physical meanings of the Stokes parameters:
	- S_0 describes the total intensity of the light, which is polarization-unrelated
	- S_1 describes the difference between the intensity of the vertical (90°) and horizontal (0°) polarized light
	- S_2 describes the difference between the intensity of the 135 \degree and 45° polarized light
- Once the Stokes parameters are available, the DoP p and AoP θ could be easily acquired

 $S_1 = I_{\alpha_3} - I_{\alpha_1}$

 $S_0 = I_{\alpha_1} + I_{\alpha_3} = I_{\alpha_2} + I_{\alpha_4}$

 \mathbf{p} θ

• A neural network-based three-phase fusing scheme

- Phase1: Irradiance restoration • Improve the image quality
- Phase2: Polarization reconstruction
	- Preserve the polarization properties
- Phase3: Artifact suppression
	- Refine the overall details

Phase1: Irradiance restoration

- Goal: restoring the polarization-unrelated high-level irradiance information
	- to obtain the coarse value of the total intensity of the light S_0^t for providing further guidance

- Since $\mathbf{L}_{\alpha_{1,2,3,4}}$ would retain better contours than $\mathbf{B}_{\alpha_{1,2,3,4}}$
	- We choose to learn the residual between S_0^L and S_0^t instead of the residual between \mathbf{S}^B_0 and \mathbf{S}^t_0
- Difficulties: S_0^L suffers from color bias and noise
	- Hard to extract features robustly
	- \rightarrow erroneous global tone and less salient local structure

Phase1: Irradiance restoration

- Goal: restoring the polarization-unrelated high-level irradiance information
	- to obtain the coarse value of the total intensity of the light S_0^t for providing further guidance

- We observe that \mathbf{S}^{B}_0 and $\mathbf{S}^{\text{L}}_{1,2}$ could provide some cues:
	- S_0^B contains undamaged color information
		- due to the relatively high SNR of $B_{\alpha_{1,2,3,4}}$
		- \rightarrow Extract color features $\mathbf{F}_{1,2,3}^{\text{s}}$ from $\mathbf{S}_{0}^{\text{B}}$
	- $\mathbf{S}_{1,2}^{\mathsf{L}}$ contain distinctive structure information
		- since both of them describe the difference between two polarized images
		- \rightarrow Extract structure features $\mathbf{F}_{1,2,3}^{\text{c}}$ from $\mathbf{S}_{1,2}^{\text{L}}$

• How to mitigate erroneous global tone and less salient local structure?

CSCF (color and structure cue fusion) module

- In the feature space, we propose to
	- apply an affine transformation to F_i^{in} to
		- adjust the color in the feature space \rightarrow $F_i^t = m_i \odot F_i^{in} + b_i$
	- apply a deformable convolution layer to
		- align the gradients
		- overcome the possible shifts caused by the exposure interval
		- \rightarrow $F_i^{\text{out}} = \mathcal{D}(F_i^{\text{t}}, \Delta P_i, \Delta M_i)$

Phase2: Irradiance restoration

- Goal: establishing the physical correlation between the polarized images
• by reconstructing the high-quality DoP and AoP
	-

• No!

• The degeneration patterns of the DoP and AoP could be complicated due to their non-linearity

- How to handle the non-linearity?
	- Previous solution: adopting an indirect approach
		- Repairing the degenerated values of the DoP and AoP in the image domain or Stokes domain
	- Let's take the low-light enhancement methods for polarized images as examples:

• Disadvantage: cannot optimize the values explicitly

• Can we achieve this in a direct manner?

- Given a vector S lying inside a unit circle
	- $(\mathbf{p}, \boldsymbol{\theta})$: the polar coordinate representation (PCR)
		- **p** is the magnitude
		- θ is the angle
	- (x, y) : the Cartesian coordinate representation (CCR)
		- \cdot x is the horizontal value
		- y is the vertical value

$$
\Rightarrow x = \frac{S_1}{S_0}, y = \frac{S_2}{S_0}
$$

- Advantages of reconstructing the DoP and AoP in CCR:
	- Not only reduce the non-linearity
	- But also optimize the values in a direct manner

Phase2: Irradiance restoration

- Goal: establishing the physical correlation between the polarized images
	- by reconstructing the high-quality DoP and AoP in a Cartesian coordinate representation (x', y')

• Learn the residual between (x^t, y^t) and $({\bf x}^\prime, {\bf y}^\prime)$ with the help of $\left({\bf x}^{\rm B}, {\bf y}^{\rm B}\right)$ and ${\bf S}^{\rm t}_0$

$$
\mathbf{x}^t = \frac{\mathbf{S}_1^L}{\mathbf{S}_0^t}, \mathbf{y}^t = \frac{\mathbf{S}_2^L}{\mathbf{S}_0^t}
$$

$$
\mathbf{x}^B = \frac{\mathbf{S}_1^B}{\mathbf{S}_0^B}, \mathbf{y}^B = \frac{\mathbf{S}_2^B}{\mathbf{S}_0^B}
$$

- CAG: aggregate the coherence between the polarization properties and the irradiance information
- CI: inject the coherence into the reconstruction of x^t and y^t

CAG (coherence-aware aggregation) module CI (coherence injection) module

Phase3: Artifact suppression

- Goal: increasing the quality of details
	- by suppressing the artifacts in the image domain to obtain $I_{\alpha_{1,2,3,4}}$
	- After Phase2, the quality of the coarse values of the polarized images $\mathbf{I}'_{\alpha_{1,2,3,4}}$ is still not satisfying since $\mathbf{S}_{0}^{\text{t}}$ and $(\mathbf{x}', \mathbf{y}')$ are from different phases

- Solution: add a refinement phase
	- Divide $\mathbf{I}'_{\alpha_{1,2,3,4}}$ into two groups $(\mathbf{I}'_{\alpha_{1,3}} \& \mathbf{I}'_{\alpha_{2,4}})$ since $\mathbf{S}_0 = \mathbf{I}_{\alpha_1} + \mathbf{I}_{\alpha_3} = \mathbf{I}_{\alpha_2} + \mathbf{I}_{\alpha_4}$

 \rightarrow both groups contain the full irradiance information

 \rightarrow each group contains half of the polarization properties

• The total loss function can be written as $L = L_s + L_p + L_r$

- L_s : irradiance loss
• Phase1 Phase1
- L_p : polarization loss
	- Phase2
- L_r : refinement loss
	- Phase3

- Irradiance loss: $L_s = \lambda_s^a L_1(S_0^t, S_0^{gt}) + \lambda_s^b L_{perc}(S_0^t, S_0^{gt})$
	- $L_1: \ell_1$ loss
	- $L_{\rm perc}$: perceptual loss
		- $L_{\text{perc}}(\mathbf{S}_0^{\text{t}}, \mathbf{S}_0^{\text{gt}}) = L_2\left(\phi_h(\mathbf{S}_0^{\text{t}}), \phi_h(\mathbf{S}_0^{\text{gt}})\right)$
			- L_2 : ℓ_2 loss
			- ϕ_h : the feature map from *h*-th layer of VGG-19 network pretrained on ImageNet
- Polarization loss: $L_p = \lambda_p^a (L_1(\mathbf{x}', \mathbf{x}^\text{gt}) + L_1(\mathbf{y}', \mathbf{y}^\text{gt})) + \lambda_p^b (L_\text{tv}(\mathbf{x}') + L_\text{tv}(\mathbf{y}')) + \lambda_p^c L_{\text{pol}}^1(\mathbf{x}', \mathbf{x}^\text{gt}, \mathbf{y}', \mathbf{y}^\text{gt})$
	- L_{tv} : total variation loss
	- $L^1_{\rm pol}$: a polarization-based regularization term to ensure the ratio between ${\bf x}'$ and ${\bf y}'$
		- $L_{\text{pol}}^1 = L_2(\mathbf{x}' \bigodot \mathbf{y}^{\text{gt}}, \mathbf{y}' \bigodot \mathbf{x}^{\text{gt}})$
- Refinement loss: $L_r = \lambda_r^a L_1 \left(\mathbf{I}_{\alpha_{1,2,3,4}}, \mathbf{I}_{\alpha_{1,2,3,4}}^{gt} \right) + \lambda_r^b L_{pol}^2 \left(\mathbf{I}_{\alpha_{1,2,3,4}} \right)$
	- $L_{\rm pol}^2$: another polarization-based regularization term

$$
\cdot L_{\text{pol}}^2(\mathbf{I}_{\alpha_{1,2,3,4}}) = L_2(\mathbf{I}_{\alpha_1} + \mathbf{I}_{\alpha_3}, \mathbf{I}_{\alpha_2} + \mathbf{I}_{\alpha_4})
$$

Quantitative evaluation on synthetic data

- The state-of-the-art polarized image low-light enhancement method and its improved version
	- **PLIE** & **PLIE+** [Zhou *et al*., AAAI 23]
- The state-of-the-art polarized image deblurring method and its improved version
	- **PolDeblur** & **PolDeblur+** [Zhou *et al*., Arxiv 24]
- Four learning-based image enhancement methods designed for conventional images that also fuse noisy and blurry pairs
	- LSD2 [Zhao *et al*., BMVC 20]
	- LSFNet [Chang *et al*., TMM 21]
	- SelfIR [Zhang *et al*., NeurIPS 22]
	- D2HNet [Zhao *et al*., ECCV 22]

* The dataset is generated from the PLIE dataset [Zhou *et al*., AAAI 23] * An "improved version" refers to making slight modifications to the original version in order to enable it to accept noisy and blurry input pairs.

Qualitative evaluation on synthetic data 墨

Qualitative evaluation on synthetic data 墨

Qualitative evaluation on synthetic data 墨

Qualitative evaluation on real data

p

Reflection-contaminated input

Reflection-removed output

- A quality-improved and property-preserved polarimetric imaging framework
	- by complementarily fusing a degraded pair of noisy and blurry polarized snapshots
- A neural network-based three-phase fusing scheme
	- fully utilizing the complementary knowledge from the noisy and blurry pairs in a polarization-aware manner
- Specially-designed modules tailored to each phase
	- effectively exploring the usage of different physical quantities to improve the overall performance

Chu Zhou (周 矗,シュウ チク) National Institute of Informatics, Japan zhou chu@hotmail.com