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Background

Goal: Telecommunication network fault diagnosis (TNFD).

Method: Root cause analysis (RCA) is to learn a causal graph that represents alarm activation relations. 

and then using decision-making techniques to efficiently identify the root cause alarm when a fault occurs.

Problem: solve a causal structure learning problem AIOps (Artificial Intelligence for IT Operations).

RCA solution in TNFD
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Problem Formulation

An illustrative example of the topological event 
sequences generated by a telecommunication network
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Learned Causal Structure

Root Cause Analysis (RCA)

𝑿 = { 𝑣𝑖 , 𝑛𝑖 , 𝑡𝑖 ∣ 𝑖 = 1,… ,𝑚}: Event sequence

𝑣𝑖 ∈ 𝑉: Type of alarms (events)

𝑛𝑖 ∈ 𝑁: Devices

𝑡𝑖 ∈ [0, 𝑇]: Time domain
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Problem Formulation

The solid lines represent the data generation process.

The dashed lines represent the RCA inference process.

Illustration of Data Generation and Causal Discovery Process in RCA
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Problem Formulation

Hawkes Process [1]

Topological Multivariate Hawkes Process [2]

• 𝜆 𝑡 is  the intensity function.

• 𝜇 is a constant, representing the baseline intensity of the event.

• The second term represents the influence of events occurring before time 𝒕 on 

the intensity at time 𝑡, where 𝜙 is a decay function.

• 𝜆𝑣
𝑛 𝑡 represents the intensity function of event 𝑣 at device 𝑛.

• 𝜇𝑣
𝑛 is the baseline intensity of event 𝑣 at device 𝑛.

• 𝑁𝑒𝑖 𝑛 is the set of neighboring devices of device 𝑛 which can be known from the 

topology matrix 𝐁.

• 𝑎𝑣𝑖𝑣 indicates the activation effect of event type 𝑣𝑖 on event type 𝑣, which is 

assumed to follow the principle of Granger Causality.
[1]. Hawkes, Alan G, et al. "Spectra of some self-exciting and mutually exciting point processes." Biometrika 58.1 (1971).

[2]. Cai, Ruichu, et al. "THPs: Topological hawkes processes for learning causal structure on event sequences." IEEE Transactions on Neural Networks and Learning Systems (2022).



Challenges

• Scalability Challenge: 

The scales of the problems presented in this competition ranges from tens to a hundred, which is 

considered a significant hurdle for causal discovery. Finding an efficient solution to problems of such 

scale is a daunting task.

• Effectiveness Challenge: 

The TNFD task is closely related to the livelihood infrastructure, incorrect outcomes could lead to 

severe economic losses and negative social public opinion. As a result, it presents a challenge to the 

accuracy of causal discovery.

• Interpretability Challenge: 

In order to obtain results that are comprehensible to humans, it is imperative that the discovered 

causal graph be a directed acyclic graph (DAG). However, ensuring this constraint satisfied during the 

optimization process poses a challenge.



S2GCSL 

To address the above challenges, we propose S2GCSL: a Simple yet Scalable Granger Causal
Structural Learning Approach for fast and effective causal discovery.

Maximum Likelihood Estimation

• Convert the causal discovery problem into an optimization problem

Event Sequence

𝑨′′ = 𝑎𝑣𝑖𝑣 ∈ ℝ 𝑉 × 𝑉 , 𝝁 ∈ ℝ|𝑉|

• 𝑨′′ and 𝝁 are to-be-estimated parameters.



Constrained Gradient Descent based Maximum Likelihood Estimation

• For Scalability Challenge: Gradient descent

• For Effectiveness Challenge: Entry-norm Penalty

• For Interpretability Challenge: Acyclic Constraint [1]

Optimization

We employ the Adam [2] optimizer to solve the above problem.

Pruning

After the above process converges, we will delete edges that are below a predefined 

threshold to obtain the final causal graph

𝑨′ = 𝑨⋆
′′ ≥ 𝜌

[1]. Yue Yu, et al. "DAG-GNN: DAG Structure Learning with Graph Neural Networks." Proceedings of the 36th International Conference on Machine Learning (2019)

[2]. Kingma, et al. "Adam: A Method for Stochastic Optimization."  Proceedings of the 3rd International Conference for Learning Representations (2014).

Final Objective：

S2GCSL 



Experiment: Setup

Simulation:

Random 
DAG

Random Device 
Topology

Topological Hawkes Process

Simulated Event 
Sequences

Simulation parameters:

• Alarm types ( 𝑁 ): {20, 40, 60, 80}

• Devices 𝑉 : 5, 10, 15, 20, 25, 50, 100

• Sample size (𝑚) ∶ 50𝑘, 100𝑘, 150𝑘, 200𝑘, 250𝑘, 300𝑘

• 𝜇 range(× 10−5): {(1, 3), (3, 5), (5, 7), (7, 9)}

• 𝛼 range(× 10−5): { 1, 2 , 2, 3 , 3, 4 , 4, 5 , (5, 6)}

• Time interval Δ: { 1, 2 , 2, 3 , 3, 4 , 4, 5 , (5, 6)}



Experiment: Results on Simulation datasets

Metrics:

• F1 Score ↑

• Structural Hamming Distance（SHD）↓

• Structural Interventional Distance （SID）↓

• Wall-clock Execution Time （ET）↓

S2GCSL surpass all the other compared 

algorithms on effectiveness (F1 Score, SHD 

and SID), especially on large-scale problems

The larger the problem scale, the more 

pronounced the advantages for S2GCSL.



Experiment: Results on Simulation datasets

S2GCSL remains competitive or 

surpasses other compared algorithms 

in efficiency across problems scale 

ranging from 5 to 100

Up to 277x acceleration!

S2GCSL surpass all the other compared 

algorithms on effectiveness (F1 Score, SHD 

and SID), especially on large-scale problems

The larger the problem scale, the more 

pronounced the advantages for S2GCSL.



Experiment: Results on Real-world datasets

Real-world Metropolitan Telecommunication Network Alarm Data

S2GCSL surpasses other compared algorithms in F1 Score, SHD and ET on real-world dataset

Most promising in 
real-world scenarios



Conclusion & Take-home Message

• Effective and Scalable Solution: S2GCSL introduces an effective and scalable approach for 

Granger causal structural learning from topological event sequences, optimized for large-

scale telecommunication network fault diagnosis.

• Key Methodology: Linear kernel with gradient descent optimization; Incorporate expert 

knowledge via constraints to ensure interpretability.

• Performance Advantage: Demonstrates superior effectiveness and scalability on synthetic 

and real-world datasets compared to existing methods.

• Practical Impact: Addressing real-world fault diagnosis challenges through efficient Granger 

causal structure learning.
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