

A Simple yet Scalable Granger Causal Structural Learning Approach for Topological Event Sequences

Mingjia Li*, Shuo Liu*, Hong Qian[†], Aimin Zhou (* Equal contribution + Corresponding author)

Shanghai Institute of AI for Education School of Computer Science and Technology East China Normal University, China

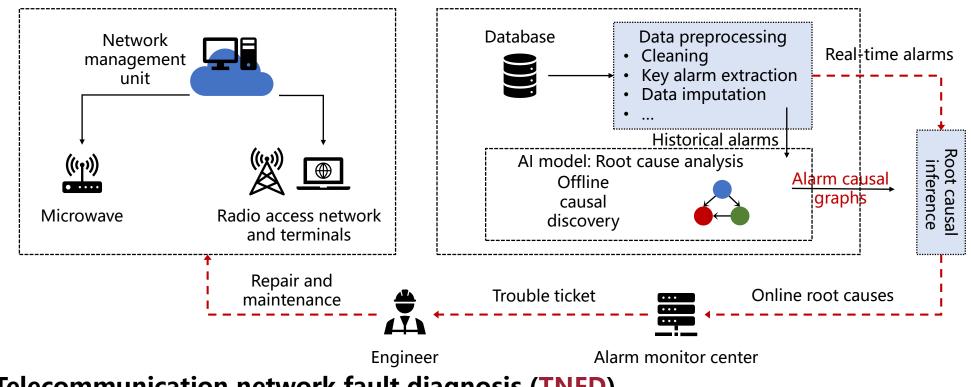
NeurIPS 2024

Outline

- Background
- Problem Formulation
- Challenges
- S²GCSL
- Summary & Discussion

Background

RCA solution in **TNFD**



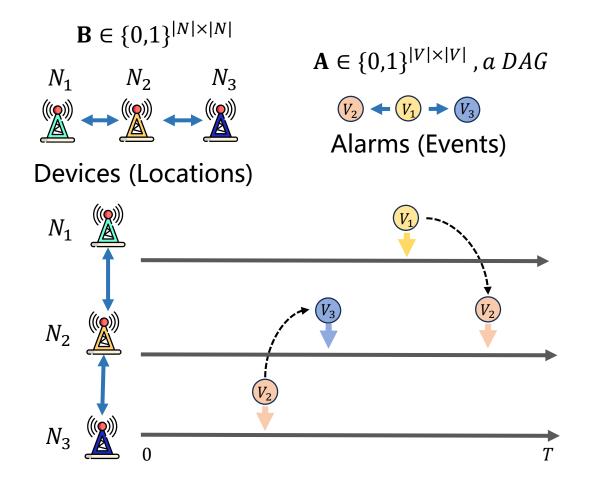
Goal: Telecommunication network fault diagnosis (TNFD).

Method: Root cause analysis (RCA) is to learn a causal graph that represents alarm activation relations. and then using decision-making techniques to efficiently identify the **root cause alarm** when a fault occurs.

Problem: solve a causal structure learning problem AIOps (Artificial Intelligence for IT Operations).

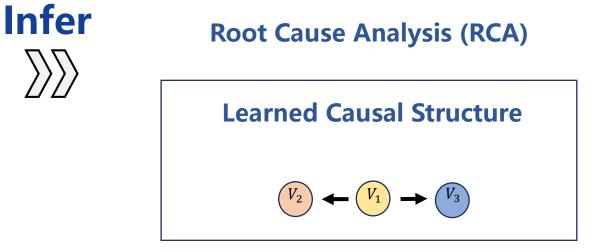
Problem Formulation

An illustrative example of the topological event sequences generated by a telecommunication network



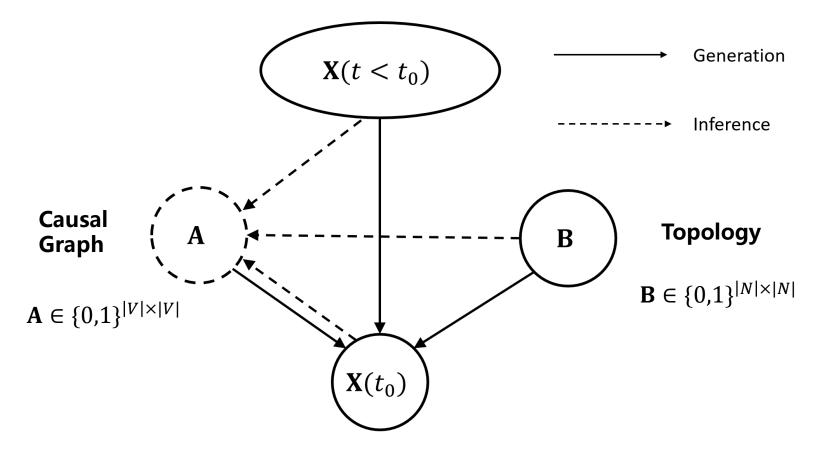
 $X = \{(v_i, n_i, t_i) \mid i = 1, ..., m\}: \text{Event sequence}$ $v_i \in V: \text{Type of alarms (events)}$ $n_i \in N: \text{Devices}$ $t_i \in [0, T]: \text{Time domain}$

NEURAL INFORMATION PROCESSING SYSTEMS



Problem Formulation

Illustration of Data Generation and Causal Discovery Process in RCA



The solid lines represent the **data generation process**.

The dashed lines represent the RCA inference process.

Problem Formulation

Hawkes Process ^[1]
$$\lambda(t) = \mu + \sum_{t_i < t} \phi(t - t_i)$$

- $\lambda(t)$ is the intensity function.
- μ is a **constant**, representing the **baseline intensity** of the event.
- The second term represents the influence of events occurring before time t on the intensity at time t, where φ is a decay function.

Topological Multivariate Hawkes Process [2] $\lambda_v^n(t) = \mu_v^n + \sum_{i:n_i \in Nei(n), t_i < t} a_{v_i v} \phi(t - t_i)$

- $\lambda_v^n(t)$ represents the **intensity function** of event v at device n.
- μ_v^n is the **baseline intensity** of event v at device n.
- *Nei*(*n*) is the set of **neighboring devices** of device *n* which can be known from the topology matrix **B**.
- a_{v_iv} indicates the **activation effect** of event type v_i on event type v, which is assumed to follow the principle of **Granger Causality**.

[1]. Hawkes, Alan G, et al. "Spectra of some self-exciting and mutually exciting point processes." *Biometrika* 58.1 (1971).

[2]. Cai, Ruichu, et al. "THPs: Topological hawkes processes for learning causal structure on event sequences." IEEE Transactions on Neural Networks and Learning Systems (2022).

Challenges

Scalability Challenge:

The scales of the problems presented in this competition ranges from tens to a hundred, which is considered a significant hurdle for causal discovery. Finding an **efficient solution** to problems of such scale is a daunting task.

Effectiveness Challenge:

The TNFD task is closely related to the livelihood infrastructure, incorrect outcomes could lead to severe economic losses and negative social public opinion. As a result, it presents a challenge to the **accuracy** of causal discovery.

Interpretability Challenge:

In order to obtain results that are comprehensible to humans, it is imperative that the discovered causal graph be a **directed acyclic graph (DAG)**. However, ensuring this constraint satisfied during the optimization process poses a challenge.

To address the above challenges, we propose S²GCSL: a Simple yet Scalable Granger Causal Structural Learning Approach for fast and effective causal discovery.

Event Sequence $X = \{(v_i, t_i, n_i) \mid i = 1, \dots, m\}$

Maximum Likelihood Estimation

$$egin{aligned} \lambda_v^n(t) &= \mu_v^n + \sum_{i:n_i \in Nei(n), t_i < t} a_{v_i v} \phi(t-t_i) \ &oldsymbol{A}^{\prime\prime} = ig[a_{v_i v}ig] \in \mathbb{R}^{|V| imes |V|}, oldsymbol{\mu} \in \mathbb{R}^{|V|} \end{aligned}$$

• A'' and μ are to-be-estimated parameters.

$$Lig(A'',\muig) = \sum_n igg(\sum_{i=1}^{m_n} \log \lambda_{v_i}^n(t_i) - \sum_{v=1}^V \int_0^T \lambda_v^n(t) dtigg) \longrightarrow igg| oldsymbol{A}_{\star}'' = rgmin_{oldsymbol{A}'',oldsymbol{\mu}} - Lig(oldsymbol{A}'',oldsymbol{\mu}ig).$$

• Convert the causal discovery problem into an optimization problem

Constrained Gradient Descent based Maximum Likelihood Estimation

$$oldsymbol{A}_{\star}^{\prime\prime} = rgmin_{oldsymbol{A}^{\prime\prime},oldsymbol{\mu}} - Lig(oldsymbol{A}^{\prime\prime},oldsymbol{\mu}ig).$$

- For Scalability Challenge: Gradient descent
- For **Effectiveness Challenge**: Entry-norm Penalty $\|m{A}''\|_{1,1}$
- For Interpretability Challenge: Acyclic Constraint^[1] $h(\mathbf{A}'') = \operatorname{trace} \left[(\mathbf{I} + \alpha \mathbf{A}'' \circ \mathbf{A}'')^{|\mathbf{V}|} \right] |\mathbf{V}|$ Final Objective: $\mathbf{A}''_{\star} = \operatorname*{argmin}_{\mathbf{A}'', \boldsymbol{\mu}} - L(\mathbf{A}'', \boldsymbol{\mu}) + \lambda_1 \|\mathbf{A}''\|_{1,1} + \lambda_2 h(\mathbf{A}'')$

Optimization

We employ the Adam^[2] optimizer to solve the above problem.

Pruning

After the above process converges, we will delete edges that are below a predefined threshold to obtain the final causal graph

$$A' = A''_{\star} \ge \rho$$

[1]. Yue Yu, et al. "DAG-GNN: DAG Structure Learning with Graph Neural Networks." Proceedings of the 36th International Conference on Machine Learning (2019) [2]. Kingma, et al. "Adam: A Method for Stochastic Optimization." Proceedings of the 3rd International Conference for Learning Representations (2014).

Experiment: Setup

単東師だた学

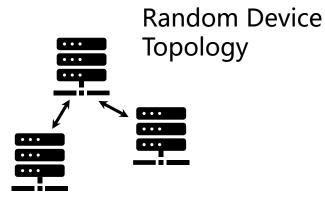
EAST CHINA NORMAL UNIVERSITY

シント

Simulation:

Simulated Event Sequences

$$oldsymbol{X} = \{(v_i,t_i,n_i) \mid i=1,\dots,m\}$$



Simulation parameters:

- Alarm types (|*N*|): {20, 40, 60, 80}
- Devices (|V|): {5, 10, 15, 20, 25, 50, 100}
- Sample size (m) : {50k, 100k, 150k, 200k, 250k, 300k}
- μ range(× 10⁻⁵): {(1,3), (3,5), (5,7), (7,9)}
- α range(× 10⁻⁵): {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}
- Time interval Δ : {(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}

Experiment: Results on Simulation datasets

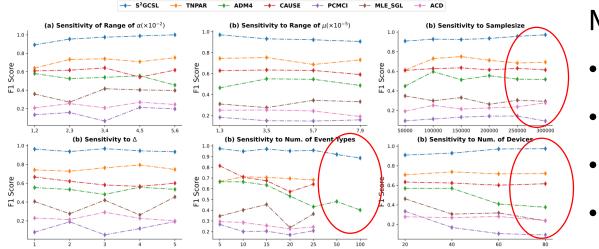
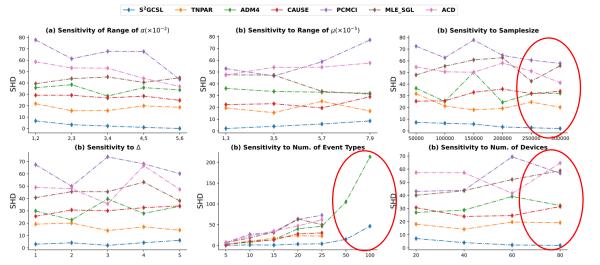


Figure 2: The F1 Scores of different methods on synthetic data.



Metrics:

- F1 Score 1
- Structural Hamming Distance (SHD) ↓
- Structural Interventional Distance (SID) ↓
- Wall-clock Execution Time (ET) ↓

S²GCSL surpass all the other compared algorithms on effectiveness (F1 Score, SHD and SID), especially on **large-scale** problems

The larger the problem scale, the more pronounced the advantages for S²GCSL.

Experiment: Results on Simulation datasets

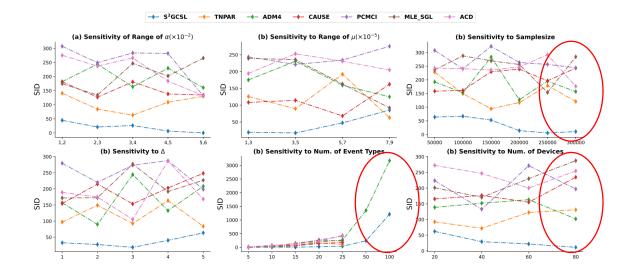


Figure 4: The SID of different methods on synthetic data.

Table 1: The wall-clock execution time (s) of different methods on different scale of synthetic problems. The algorithm with the highest efficiency under each scale of problem is marked in bold, and "-" indicates that results cannot be obtained within one hour.

Algorithms	5	10	15	20	25	50	100
S ² GCSL	$2.48 imes 10^{0}$	$8.67 imes10^{0}$	$1.92 imes 10^1$	5.48×10^{1}	8.64×10^1	$2.11 imes10^2$	$5.42 imes10^2$
TNPAR	3.61×10^2	$6.40 imes 10^2$	7.82×10^2	9.93×10^2	1.46×10^3	-	-
ADM4	1.17×10^1	2.11×10^1	$3.00 imes 10^1$	$4.46 imes10^1$	$6.68 imes10^1$	2.51×10^2	7.58×10^2
CAUSE	$6.88 imes 10^2$	9.05×10^2	1.21×10^3	1.66×10^3	1.92×10^3	-	-
PCMCI	$1.70 imes 10^1$	2.58×10^2	8.91×10^2	1.78×10^3	2.86×10^3	-	-
MLE_SGL	$1.28 imes 10^2$	3.22×10^2	6.04×10^2	8.23×10^2	$1.08 imes 10^3$	-	-
ACD	$3.80 imes 10^1$	$9.90 imes 10^1$	1.93×10^2	2.35×10^2	4.70×10^2	-	-

S²GCSL surpass all the other compared algorithms on effectiveness (F1 Score, SHD and SID), especially on **large-scale** problems

The larger the problem scale, the more pronounced the advantages for S²GCSL.

S²GCSL remains competitive or surpasses other compared algorithms in efficiency across problems scale ranging from 5 to 100

Up to 277x acceleration!

Experiment: Results on Real-world datasets

Real-world Metropolitan Telecommunication Network Alarm Data

Table 2: Performances of different methods on metropolitan telecommunication network alarm data. The algorithm perform best under each metric is highlighted in bold.

Algorithms	F1 Score (†)	SHD (↓)	SID (\downarrow)	$ET(s)(\downarrow)$
S ² GCSL	$\textbf{0.40}_{\pm 0.06}$	$60.6_{\pm 6.59}$	$397_{\pm 30.2}$	737 s
TNPAR	$0.23_{\pm 0.06}$	$83.1_{\pm 6.07}$	$543_{\pm 62.6}$	4604s
ADM4	$0.19_{\pm 0.03}$	$83.5_{\pm 4.15}$	$475_{\pm 50.4}$	861s
CAUSE	$0.29_{\pm 0.04}$	$78.1_{\pm 4.09}$	$468.7_{\pm 29.4}$	7209s
PCMCI	$0.08_{\pm 0.02}$	$75.5_{\pm 4.32}$	$367_{\pm 17.1}$	9342s
MLE_SGL	$0.19_{\pm 0.05}$	$77.2_{\pm 4.77}$	$406_{\pm 29.0}$	3253s
ACD	$0.14_{\pm 0.04}$	$107_{\pm 6.07}$	$655_{\pm 54.6}$	1943s

Most promising in real-world scenarios

S²GCSL surpasses other compared algorithms in F1 Score, SHD and ET on real-world dataset

Conclusion & Take-home Message

- Effective and Scalable Solution: S²GCSL introduces an effective and scalable approach for Granger causal structural learning from topological event sequences, optimized for largescale telecommunication network fault diagnosis.
- Key Methodology: Linear kernel with gradient descent optimization; Incorporate expert knowledge via constraints to ensure interpretability.
- **Performance Advantage**: Demonstrates superior effectiveness and scalability on synthetic and real-world datasets compared to existing methods.
- **Practical Impact**: Addressing real-world fault diagnosis challenges through efficient Granger causal structure learning.

THANK YOU!

Prof. Assoc. Prof. Mingjia Li* Shuo Liu* Aimin Zhou Hong Qian[†] (* Equal contribution + Corresponding author)

Source Code

Paper

Wechat

Shanghai Institute of AI for Education School of Computer Science and Technology East China Normal University, China

NeurIPS 2024

Email: limj@stu.ecnu.edu.cn