

Dengwei Zhao, Shikui Tu, Lei Xu **SeeA* : Efficient Exploration-Enhanced A* Search by Selective Sampling**

November 2024

ANGHAI JIAO TONG UNIVERSITY

History of A* Search

- A* search algorithm is first published in 1968 by Peter Hart, Nils Nilsson and Bertram Raphael^[1].
- \bullet A* search maintains an open set $\boldsymbol{0}$ and a closed set \boldsymbol{C} :
	- **•** Select the node *n* with minimum *f* value from $\boldsymbol{0}$.
	- Move *n* from $\boldsymbol{\theta}$ to $\boldsymbol{\mathcal{C}}$, and put children of *n* into $\boldsymbol{\theta}$.
- For a node n_t , $f(n)$ is the summation of:
	- $g(n)$: accumulated cost from n_0 to n_t .
	- $h(n)$: expected cost from n_t to the goal.

 $g(n)$ computes the cost from the known searching trajectory.

 $h(n)$ is a heuristic function to estimate the cost of the future path.

Renaissance of A*

- Inspired by the combination of deep neural network and Monte Carlo tree search, three possible aspects are addressed with a family of possible improvements proposed under the name of Deep IA-search^[2]
	- Estimating $f(n)$ with the help of deep learning, making A^* into the era of learning aided A^{*}.
	- **•** Seeking a better estimation of $f(n)$ with the help of global or future information
		- Lookahead or scouting before expanding the current node to collect future information to revise $f(n)$ of the current node.
		- Examing under path consistency condition, that is, $f(n)$ values on one optimal path should be identical.
	- **•** Searching under inaccurate estimation of $f(n)$
		- Selecting nodes among the subset of open nodes of A* .

Optimality of A* Search

- $f(n) = g(n) + h(n)$ is an estimation of the real cost $f^*(n) = g^*(n) + h^*(n)$.
- $g(n) = g^{(n)}$ because $g(n)$ is calculated from the known trajectory.
- Admissible assumption: heuristic function never overestimate the real cost, i.e., $h(n) \leq h^*(n) \Rightarrow A^*$ is guaranteed to find the optimal solution.
- \blacksquare The efficiency of A^* search is highly influenced by the accuracy of the estimation of $h(n)$, even if the optimality is guaranteed.
- **•** For example, heuristic function $h(n)$ satisfies the admissible assumption.

$$
h(n) = \begin{cases} h^*(n), & \text{if } n \text{ is on the optimal path} \\ 0, & \text{Otherwise} \end{cases}
$$

Limitation of A* Search

上海交通

• The search efficiency is largely compromised due to the inaccuracy of $f(n)$ and the best-first search strategy of A* .

Sampling Exploration Enhanced Search

- SeeA* is proposed by introducing exploration into the best first A* search.
	- **•** Sample a candidate subset \mathcal{D} from the open set \mathcal{O} .
	- Select the node *n* with the lowest f -value from the candidate set \mathcal{D} .
- **.** If the node with minimum f-value is not sampled into the candidate set D , the node selected to be expanded later is not the same as the one by A* search.

Sampling strategy

- **•** Uniform sampling: K nodes are randomly selected from the open nodes as \mathcal{D} .
- Clustering sampling: partition open nodes into multiple clusters and sampling nodes from each cluster evenly.
- **UCT-like sampling:** K nodes with the smallest E values are chosen

•
$$
E(n) = f(n) - c_b \times \frac{\sqrt{d_{max}}}{1 + d(n)}, d(n)
$$
 is the depth in the search tree.

Efficiency of SeeA* search

- The f^* values of all nodes on the optimal path are equal to the same cost μ_0^f and lower than the f^* value of nodes outside the optimal path, which was assumed to be sampled from a Gaussian distribution $\mathbf{G}(\mu_1^f, \sigma_s^2)^{[3]}.$
- If the estimation error of f follows an uniform distribution, we assume that: For each node *n* on the optimal path, $f(n) \sim \mathbf{U}(\mu_0^f - \sigma, \mu_0^f + \sigma)$. For nodes not on the optimal path, $f(n) \sim \mathcal{U}(f^*(n) - \sigma, f^*(n) + \sigma)$, and $f^*(n)$ are independently and identically sampled from $\mathbf{G}(\mu_1^f, \sigma_s^2)$.
- For *n* on the optimal path and n' off the optimal path, the probability $p_{\sigma} = P(f(n) \leq f(n')|\sigma)$
- **•** decreases as the prediction error σ increases.

Efficiency of SeeA* search

- Assume the open set $\boldsymbol{0} = \{n_1, n_2, \cdots, n_{N_0}\}$, and n_1 is the optimal node.
- **The probability of A^{*}** search expanding node n_1 is $P_A(\sigma) = P(n_1 = \arg\min_{n \in \mathcal{O}} f(n)|\sigma)$
- The probability of SeeA^{*} expanding node n_1 is $P_{\rm s}(\sigma) = P(n_1 \in \mathcal{D}, n_1 = \operatorname{argmin}_{n \in \mathcal{D}} f(n)|\sigma)$
- **•** If the uniform sampling strategy is used, $P_S(\sigma) > P_A(\sigma)$ holds if and only if

$$
p_{\sigma} < H(N_o), H(N_o) = \left(\frac{K}{N_o}\right)^{1/(N_o - K)}
$$
 and $N_o > K \ge 1$

■ Larger $P \Rightarrow$ fewer expansions to find the optimal solution \Rightarrow SeeA^{*} is more efficient than A* .

Efficiency of SeeA* search

- If the estimation is quite inaccurate \Rightarrow small p_{σ}
- $H(N_0)$ is monotonically increases with respect to N_0 , and lim $N_O \rightarrow \infty$ $H(N_O) = 1 \Rightarrow$ Complex problem with larger branching factor \Rightarrow large $H(N_0)$
- **•** Both situation makes the condition $p_{\sigma} < H(N_{0})$ established.
- **•** For uniform sampling, $P_S(\sigma)$ is approximately equal to $\frac{K}{N}$ N_{O} p_{σ}^{K-1} , and $K^* = \text{argmax} P_S(\sigma) = -1/\text{log} p_{\sigma}$
- If the estimation is quite accurate $\Rightarrow p_{\sigma} \to 1 \Rightarrow K^* \to \infty \Rightarrow$ SeeA* becomes A*.
- If the estimation is quite inaccurate $\Rightarrow p_{\sigma} \rightarrow 0 \Rightarrow K^* = 1 \Rightarrow$ SeeA* becomes random sampling, and the estimation of f provides no information.

Experiments

- Two real word applications are considered:
	- Retrosynthetic planning in organic chemistry: identify a series of chemical reactions that can utilize available molecules to generate the target molecule.
	- Logic synthesis in integrated circuit design: optimize the and-inverter logic graph to have the lowest area-delay product (ADP) through a sequence of functionalitypreserving transform.
- The learned heuristic functions face a significant overfitting issue
	- State space for both problem are quite huge.
	- The training data is quite limited.

Results on Retrosynthetic Planning

- Test on seven molecule sets including the USPTO benchmark.
- SeeA^{*} maintains its superiority over other search algorithms.
- SeeA*(Cluster) has the highest mean success rate of 63.56%.
- The clustering sampling and UCT-like sampling are better than uniform sampling in terms of the solved rate and the route length.

Results on Logic Synthesis

- SeeA*(Cluster) achieves the highest ADP reduction (i.e., 23.5%), obviously surpassing the state-of-the-art ABC-RL's 20.9%, and all other search algorithm.
- Trained on 23 chips and test on 12 chips.

Results on Path Finding

- Path finding: find the shortest path from a starting point to a destination.
- The cost for each step is 1. q is the number of steps taken to reach the current position, and h is the Euclidean distance from the current position to the target position, which is reliable enough to guide the search.
- An unreliable heuristic function \hat{h} is designed, which is randomly sampled from $[0, 2 \times h]$.

Exploration of SeeA*

Summary

- In this paper, the SeeA^{*} search is proposed to enhance the exploration behavior of the A* search by selecting expanded nodes from the sampled candidate nodes, rather than the entire set of open nodes.
- **Example 1** See A* is more efficient than A^* from both theoretical analysis and experimental results.
- According to $P_{\mathcal{S}}(\sigma) = P(n_1 \in \mathcal{D}) \times P(n_1 = \operatorname{argmin}_{n \in \mathcal{D}} f(n) | \sigma, n_1 \in \mathcal{D})$:
	- Executing the prediction error σ of the heuristic function.
	- **•** Using a smaller number of candidate nodes K to include the optimal node in the candidate set with a greater likelihood $P(n_1 \in \mathcal{D})$, smaller K is also helpful to select n_1 from \mathcal{D} .
	- Investigations on more effective sampling strategies will be conducted in future.

Reference

- [1] Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. "A formal basis for the heuristic determination of minimum cost paths." *IEEE transactions on Systems Science and Cybernetics* 4.2 (1968): 100-107.
- [2] Xu, Lei. "Deep bidirectional intelligence: AlphaZero, deep IA-search, deep IA-infer, and TPC causal learning." *Applied Informatics*. Vol. 5. No. 1. Berlin/Heidelberg: Springer Berlin Heidelberg, 2018.
- [3] Xu, Lei, Pingfan Yan, and Tong Chang. "Algorithm CNneim-A and its mean complexity." *Proc. of 2nd international conference on computers and applications. IEEE Press, Beijing*. 1987.

!

https://github.com/CMACH 508/SEEA_star

