

SeeA*: Efficient Exploration-Enhanced A* Search by Selective Sampling Dengwei Zhao, Shikui Tu, Lei Xu

November 2024

Shanghai Jiao Tong University

History of A* Search

- A* search algorithm is first published in 1968 by Peter Hart, Nils Nilsson and Bertram Raphael^[1].
- A^* search maintains an open set \mathcal{O} and a closed set \mathcal{C} :
 - Select the node *n* with minimum *f* value from *O*.
 - Move n from O to C, and put children of n into O.
- For a node n_t , f(n) is the summation of:
 - g(n): accumulated cost from n_0 to n_t .
 - h(n): expected cost from n_t to the goal.

g(n) computes the cost from the known searching trajectory.

h(n) is a heuristic function to estimate the cost of the future path.

Renaissance of A^*

- Inspired by the combination of deep neural network and Monte Carlo tree search, three possible aspects are addressed with a family of possible improvements proposed under the name of Deep IA-search^[2]
 - Estimating f(n) with the help of deep learning, making A* into the era of learning aided A*.
 - Seeking a better estimation of f(n) with the help of global or future information
 - Lookahead or scouting before expanding the current node to collect future information to revise *f*(*n*) of the current node.
 - Learning under path consistency condition, that is, f(n) values on one optimal path should be identical.
 - Searching under inaccurate estimation of f(n)
 - Selecting nodes among the subset of open nodes of A^{*}.

Optimality of A* Search

- f(n) = g(n) + h(n) is an estimation of the real cost $f^*(n) = g^*(n) + h^*(n)$.
- $g(n) = g^*(n)$ because g(n) is calculated from the known trajectory.
- Admissible assumption: heuristic function never overestimate the real cost,
 i.e., h(n) ≤ h*(n) ⇒A* is guaranteed to find the optimal solution.
- The efficiency of A* search is highly influenced by the accuracy of the estimation of h(n), even if the optimality is guaranteed.
- For example, heuristic function h(n) satisfies the admissible assumption.

$$h(n) = \begin{cases} h^*(n), & \text{if } n \text{ is on the optimal path} \\ 0, & \text{Otherwise} \end{cases}$$

Limitation of A* Search

The search efficiency is largely compromised due to the inaccuracy of *f*(*n*) and the best-first search strategy of A^{*}.

Sampling Exploration Enhanced Search

- SeeA^{*} is proposed by introducing exploration into the best first A^{*} search.
 - Sample a candidate subset $\boldsymbol{\mathcal{D}}$ from the open set $\boldsymbol{\mathcal{O}}$.
 - Select the node n with the lowest f-value from the candidate set \mathcal{D} .
- If the node with minimum *f*-value is not sampled into the candidate set *D*, the node selected to be expanded later is not the same as the one by A* search.

Sampling strategy

- Uniform sampling: K nodes are randomly selected from the open nodes as \mathcal{D} .
- Clustering sampling: partition open nodes into multiple clusters and sampling nodes from each cluster evenly.
- UCT-like sampling: *K* nodes with the smallest *E* values are chosen

•
$$E(n) = f(n) - c_b \times \frac{\sqrt{d_{max}}}{1 + d(n)}$$
, $d(n)$ is the depth in the search tree.

Efficiency of SeeA^{*} search

- The f^* values of all nodes on the optimal path are equal to the same cost μ_0^f and lower than the f^* value of nodes outside the optimal path, which was assumed to be sampled from a Gaussian distribution $\mathcal{G}(\mu_1^f, \sigma_s^2)^{[3]}$.
- If the estimation error of *f* follows an uniform distribution, we assume that: For each node *n* on the optimal path, *f*(*n*) ~ *U*(μ₀^f − σ, μ₀^f + σ). For nodes not on the optimal path, *f*(*n*) ~ *U*(*f**(*n*) − σ, *f**(*n*) + σ), and *f**(*n*) are independently and identically sampled from *G*(μ₁^f, σ_s²).
- For *n* on the optimal path and *n'* off the optimal path, the probability $p_{\sigma} = P(f(n) \le f(n') | \sigma)$
- decreases as the prediction error σ increases.

Efficiency of SeeA^{*} search

- The probability of A^{*} search expanding node n_1 is $P_A(\sigma) = P(n_1 = \operatorname{argmin}_{n \in \mathcal{O}} f(n) | \sigma)$
- The probability of SeeA^{*} expanding node n_1 is $P_S(\sigma) = P(n_1 \in \mathcal{D}, n_1 = \operatorname{argmin}_{n \in \mathcal{D}} f(n) | \sigma)$
- If the uniform sampling strategy is used, $P_S(\sigma) > P_A(\sigma)$ holds if and only if

$$p_{\sigma} < H(N_o), H(N_o) = \left(\frac{K}{N_o}\right)^{1/(N_o - K)} and N_o > K \ge 1$$

Larger P ⇒ fewer expansions to find the optimal solution ⇒ SeeA* is more efficient than A*.

いた SHANGHAI JIAO TONG UNIVERSITY

Efficiency of SeeA^{*} search

- If the estimation is quite inaccurate \Rightarrow small p_{σ}
- $H(N_0)$ is monotonically increases with respect to N_0 , and $\lim_{N_0 \to \infty} H(N_0) = 1 \Rightarrow$ Complex problem with larger branching factor \Rightarrow large $H(N_0)$
- Both situation makes the condition $p_{\sigma} < H(N_0)$ established.
- For uniform sampling, $P_S(\sigma)$ is approximately equal to $\frac{K}{N_O} p_{\sigma}^{K-1}$, and $K^* = \operatorname{argmax} P_S(\sigma) = -1/\log p_{\sigma}$
- If the estimation is quite accurate $\Rightarrow p_{\sigma} \rightarrow 1 \Rightarrow K^* \rightarrow \infty \Rightarrow \text{SeeA}^*$ becomes A^* .
- If the estimation is quite inaccurate ⇒ p_σ → 0 ⇒ K* = 1 ⇒ SeeA* becomes random sampling, and the estimation of *f* provides no information.

上海交通大学 SHANGHAI JIAO TONG UNIVERSITY

Experiments

- Two real word applications are considered:
 - Retrosynthetic planning in organic chemistry: identify a series of chemical reactions that can utilize available molecules to generate the target molecule.
 - Logic synthesis in integrated circuit design: optimize the and-inverter logic graph to have the lowest area-delay product (ADP) through a sequence of functionality-preserving transform.
- The learned heuristic functions face a significant overfitting issue
 - State space for both problem are quite huge.
 - The training data is quite limited.

Results on Retrosynthetic Planning

- Test on seven molecule sets including the USPTO benchmark.
- SeeA* maintains its superiority over other search algorithms.
- SeeA*(Cluster) has the highest mean success rate of 63.56%.
- The clustering sampling and UCT-like sampling are better than uniform sampling in terms of the solved rate and the route length.

Algorithm	Solved ↑	Length↓	Algorithm	Solved ↑	Length↓
Retro*	54.66%	16.58	A^*	58.73%	15.78
MCTS	59.20%	15.91	$W\!A^*$	58.87%	15.66
LevinTS	61.01%	15.74	PHS	56.16%	16.51
€ Greedy	61.23%	19.88	SeeA*(Uniform)	62.97%	14.85
SeeA*(Cluster)	63.56%	14.31	SeeA*(UCT)	63.31%	14.33

Results on Logic Synthesis

- SeeA*(Cluster) achieves the highest ADP reduction (i.e., 23.5%), obviously surpassing the state-of-the-art ABC-RL's 20.9%, and all other search algorithm.
- Trained on 23 chips and test on 12 chips.

Algorithm	Mean ADP reduction ↑	Algorithm	Mean ADP reduction ↑
DRiLLS	14.8%	Online-RL	15.4%
SA+Pred.	19.0%	MCTS	18.5%
ABC-RL	20.9%	A^*	19.5%
€ Greedy	20.6%	PV-MCTS	19.5%
PHS	15.9%	SeeA*(Uniform)	21.6%
SeeA*(Cluster)	23.5%	SeeA*(UCT)	22.5%

Results on Path Finding

- Path finding: find the shortest path from a starting point to a destination.
- The cost for each step is 1. *g* is the number of steps taken to reach the current position, and *h* is the Euclidean distance from the current position to the target position, which is reliable enough to guide the search.
- An unreliable heuristic function ĥ is designed, which is randomly sampled from [0, 2 × h].

	Guided by <i>h</i>			Guided by \widehat{h}		
Algorithm	Solved	Cost	Expansions	Solved	Cost	Expansions
A*	100.0%	400	33340.52	100.0%	691.1	5028128
SeeA*	100.0%	400	33283.21	100.0%	531.2	54098.81

Exploration of SeeA*

Summary

- In this paper, the SeeA* search is proposed to enhance the exploration behavior of the A* search by selecting expanded nodes from the sampled candidate nodes, rather than the entire set of open nodes.
- SeeA* is more efficient than A* from both theoretical analysis and experimental results.
- According to $P_S(\sigma) = P(n_1 \in \mathcal{D}) \times P(n_1 = \operatorname{argmin}_{n \in \mathcal{D}} f(n) | \sigma, n_1 \in \mathcal{D})$:
 - Reducing the prediction error σ of the heuristic function.
 - Using a smaller number of candidate nodes K to include the optimal node in the candidate set with a greater likelihood P(n₁ ∈ D), smaller K is also helpful to select n₁ from D.
 - Investigations on more effective sampling strategies will be conducted in future.

Reference

- [1] Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. "A formal basis for the heuristic determination of minimum cost paths." *IEEE transactions on Systems Science and Cybernetics* 4.2 (1968): 100-107.
- [2] Xu, Lei. "Deep bidirectional intelligence: AlphaZero, deep IA-search, deep IA-infer, and TPC causal learning." *Applied Informatics*. Vol. 5. No. 1. Berlin/Heidelberg: Springer Berlin Heidelberg, 2018.
- [3] Xu, Lei, Pingfan Yan, and Tong Chang. "Algorithm CNneim-A and its mean complexity." *Proc. of 2nd international conference on computers and applications. IEEE Press, Beijing.* 1987.

Thanks!

Code: https://github.com/CMACH 508/SEEA_star

