

DDGS-CT

Direction-Disentangled Gaussian Splatting for Realistic Volume Rendering

Zhongpai Gao

Benjamin Planche

Meng Zheng

Terrence Chen

Ziyan Wu

Xiao Chen

DDGS-CT / motivation / digitally-reconstructed radiographs (DRRs)

- **Definition**: simulated projections of 3D CT volumes, generated through ray-tracing.
- Application: visualization, pose registration of real X-ray images.
- Limitations: slow rendering, simplistic isotropic modeling of photon/matter interactions.

UNITED

IMAGING

DDGS-CT / motivation / isotropic attenuation vs. anisotropic scattering

Primary imaging contribution

= averaged attenuation of photon energy through the volume.

Anisotropic contributions

= noise from secondary rays (scattered photons).

DDGS-CT / prior work / Gaussian splatting for DRR rendering

X-Gaussian, GaSpCT, etc. = vanilla Gaussian splatting applied to DRR

= initialization ignoring CT information, naïve isotropic Gaussians

DDGS-CT / contributions / Physics-inspired 3DGS for DRR

- Initializing via Radiodensity-Aware Dual Sampling 3D points are sampled from organ surfaces and via intensity-based sampling.
- **Disentangling Isotropic and Anisotropic 3D Gaussians** photon scattering is approximated via a 2nd set of anisotropic Gaussians.

DDGS-CT / results / novel view synthesis (qualitative comparison)

dataset: DeepFluoro

DDGS-CT / results / novel view synthesis (qualitative comparison)

dataset: Ljubljana

DDGS-CT / results / novel view synthesis (quantitative comparison)

		3DGS			X-Gaussian			DDGS (ours)		
		# points ↓	PSNR ↑	SSIM ↑	# points ↓	PSNR ↑	SSIM ↑	# points ↓	PSNR ↑	SSIM ↑
NAF-CT	abdomen	11,149	47.430	0.994	10,802	47.170	0.993	13,928	48.090	0.994
	chest	13,669	44.420	0.988	16,568	43.330	0.987	13,533	44.500	0.989
	foot	8,616	44.510	0.984	10,909	44.340	0.985	10,786	44.700	0.985
	jaw	17,902	40.470	0.973	22,318	40.020	0.972	19,665	40.570	0.974
	avg	12,834	44.210	0.985	15,149	43.720	0.984	14,478	44.470	0.986
CTPelvic1K #6	1	53,988	35.400	0.971	50,059	36.810	0.979	41,947	37.880	0.984
	2	49,099	37.030	0.982	48,113	37.790	0.986	43,933	38.430	0.988
	3	60,755	35.730	0.973	59,822	36.460	0.977	48,536	38.280	0.983
	4	42,349	38.870	0.982	37,243	39.840	0.985	39,176	40.350	0.986
	5	42,482	39.370	0.984	46,014	39.300	0.984	39,570	40.360	0.987
	6	53,832	37.140	0.983	57,197	37.420	0.983	47,398	38.260	0.986
	7	45,360	37.090	0.980	48,454	37.620	0.983	41,032	38.870	0.987
	8	51,211	38.030	0.980	45,750	38.700	0.982	43,577	39.810	0.986
	9	44,060	38.190	0.981	41,279	38.920	0.985	41,389	39.870	0.987
	10	38,691	37.800	0.984	40,030	37.550	0.985	39,691	38.730	0.987
	avg	48,183	37.470	0.980	47,396	38.040	0.983	42,625	39.080	0.986

DDGS-CT / results / X-ray-to-CT pose registration via iterative optimization

dataset: CTPelvic1K

3DGS

X-Gaussian

DDGS (ours)

red channel = target real X-ray scan

DDGS-CT / take-away / Direction-Disentangled 3DGS for DRR Rendering

Contributions:

- Initializing via Radiodensity-Aware Dual Sampling 3D points are sampled from organ surfaces and via intensity-based sampling.
- **Disentangling Isotropic and Anisotropic 3D Gaussians** photon scattering is approximated via a 2nd set of anisotropic Gaussians.

Applications:

- Realistic DRR Visualization DDGS can better approximate anisotropic phenomena impacting X-ray imaging.
- Intraoperative 2D/3D Registration DDGS improves the speed and accuracy of optimization-based pose estimation.

Thank you for your attention! \sim

