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DDGS-CT / motivation / digitally-reconstructed radiographs (DRRs)

rendering

CT volume DRR X-ray scan
(target)

𝓛

• Definition: simulated projections of 3D CT volumes, generated through ray-tracing.

• Application: visualization, pose registration of real X-ray images.

• Limitations: slow rendering, simplistic isotropic modeling of photon/matter interactions.



DDGS-CT / motivation / isotropic attenuation vs. anisotropic scattering

Primary imaging contribution 
= averaged attenuation of photon energy through the volume.

𝐸𝑖𝑛

𝐸𝑜𝑢𝑡

𝐸𝑖𝑛  = photon energy, avg. over 𝑛 samples

𝐸𝑜𝑢𝑡 = 𝐸𝑖𝑛 − Δ𝐸

 

energy attenuation

photoelectric effect
function of 𝐸𝑖𝑛 & material

compton scattering
function of 𝐸𝑖𝑛 & material

rayleigh scattering
can be ignored, low probability

Anisotropic contributions 
= noise from secondary rays (scattered photons).

= 𝐸𝑖𝑛 − Δ𝐸𝑝𝑒 − Δ𝐸𝑐𝑠 − Δ𝐸𝑟𝑠

assumption: photon attenuation is isotropic.

… but is it correct?

✗

✓

✓

→ Prior work ignore anisotropic contributions.

   (too heavy to compute, require material information)



DDGS-CT / prior work / Gaussian splatting for DRR rendering

X-Gaussian, GaSpCT, etc. = vanilla Gaussian splatting applied to DRR
= initialization ignoring CT information, naïve isotropic Gaussians

X-ray scan
(target)

DRR
(prediction)

𝓛

render

backprop.

Initialization Iterative Optimization

1. Cai, Yuanhao, et al. "Radiative gaussian splatting for efficient x-ray novel view synthesis." ECCV 2024.

2. Nikolakakis, Emmanouil, et al. "GaSpCT: Gaussian Splatting for Novel CT Projection View Synthesis." arXiv 2024.



DDGS-CT / contributions / Physics-inspired 3DGS for DRR

• Initializing via Radiodensity-Aware Dual Sampling – 3D points are sampled from organ surfaces and via intensity-based sampling.

• Disentangling Isotropic and Anisotropic 3D Gaussians – photon scattering is approximated via a 2nd set of anisotropic Gaussians.

Initialization Iterative Optimization
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DDGS-CT / results / novel view synthesis (qualitative comparison)

real projection (GT)

input CT (3D)

DiffDRR

PSNR = 9.52

3DGS

PSNR = 10.04

X-Gaussian

PSNR = 10.07

DDGS (ours)

PSNR = 10.95
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error legend: -1 +1

dataset: DeepFluoro



DDGS-CT / results / novel view synthesis (qualitative comparison)

error legend: -1 +1

real projection (GT)

input CT (3D)
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PSNR = 27.86 PSNR = 28.48PSNR = 27.45 PSNR = 27.08

DiffDRR 3DGS X-Gaussian DDGS (ours)

dataset: Ljubljana



DDGS-CT / results / novel view synthesis (quantitative comparison)

3DGS X-Gaussian DDGS (ours)

# points ↓ PSNR ↑ SSIM ↑ # points ↓ PSNR ↑ SSIM ↑ # points ↓ PSNR ↑ SSIM ↑

N
A
F
-
C
T

abdomen 11,149 47.430 0.994 10,802 47.170 0.993 13,928 48.090 0.994

chest 13,669 44.420 0.988 16,568 43.330 0.987 13,533 44.500 0.989

foot 8,616 44.510 0.984 10,909 44.340 0.985 10,786 44.700 0.985

jaw 17,902 40.470 0.973 22,318 40.020 0.972 19,665 40.570 0.974

avg 12,834 44.210 0.985 15,149 43.720 0.984 14,478 44.470 0.986

C
T
P
e
l
v
i
c
1
K
 
#
6

1 53,988 35.400 0.971 50,059 36.810 0.979 41,947 37.880 0.984

2 49,099 37.030 0.982 48,113 37.790 0.986 43,933 38.430 0.988

3 60,755 35.730 0.973 59,822 36.460 0.977 48,536 38.280 0.983

4 42,349 38.870 0.982 37,243 39.840 0.985 39,176 40.350 0.986

5 42,482 39.370 0.984 46,014 39.300 0.984 39,570 40.360 0.987

6 53,832 37.140 0.983 57,197 37.420 0.983 47,398 38.260 0.986

7 45,360 37.090 0.980 48,454 37.620 0.983 41,032 38.870 0.987

8 51,211 38.030 0.980 45,750 38.700 0.982 43,577 39.810 0.986

9 44,060 38.190 0.981 41,279 38.920 0.985 41,389 39.870 0.987

10 38,691 37.800 0.984 40,030 37.550 0.985 39,691 38.730 0.987

avg 48,183 37.470 0.980 47,396 38.040 0.983 42,625 39.080 0.986



DDGS-CT / results / X-ray-to-CT pose registration via iterative optimization

DDGS (ours)X-Gaussian3DGS

dataset: CTPelvic1K

red channel = target real X-ray scan

blue channel = predicted DRR



DDGS-CT / take-away / Direction-Disentangled 3DGS for DRR Rendering

Contributions:
• Initializing via Radiodensity-Aware Dual Sampling – 3D points are sampled from organ surfaces and via intensity-based sampling.

• Disentangling Isotropic and Anisotropic 3D Gaussians – photon scattering is approximated via a 2nd set of anisotropic Gaussians.

Applications:
• Realistic DRR Visualization – DDGS can better approximate anisotropic phenomena impacting X-ray imaging.

• Intraoperative 2D/3D Registration – DDGS improves the speed and accuracy of optimization-based pose estimation.

anisotropic 3DGS

isotropic 3DGSisotropic 

3D point set

anisotropic 

3D point set

initializationCT volume

DDGS rendered image

intra-op. X-Ray imageinitialization
pose 

estimation

pre-operative intra-operative 2D/3D registration

DDGS 

rendering

iterative 

optimization

DDGS

(Direction-Disentangled 3DGS)

Thank you for your attention!
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