ECMamba: Consolidating Selective State Space Model with Retinex Guidance for Efficient Multiple Exposure Correction

Wei Dong^{1*}, Han Zhou^{1*}, Yulun Zhang, Xiaohong Liu^{2†}, Jun Chen¹

¹ McMaster University ² Shanghai Jiao Tong University

*Equal Contribution [†]Corresponding Author

Motivation

Exposure correction is a challenging ill-posed problem:

distinct optimization flows

$$I_{over} \xrightarrow{f_{\theta}} I_{high}^{1}, I_{high}^{2}, \cdots, I_{high}^{N} \xrightarrow{f_{\theta}} I_{under}$$

multiple sub-optimal results

current methods struggle to decompose illumination and reflectance

require strong models with good performance and high efficiency

Proposed Method

ECMamba Framework

Rout

Lout

Fout

Final Output

EFF

Efficient Feed Forward

AMB Adaptive Mixup Block

Layer Norm

Layer

(+) Addition

Proposed Method

To make Mamba better process vision data, especially under-/over-exposed images,

a new SS2D layer guided by the retinex information

a feature-aware scanning strategy based on deformable feature aggregation

Observations within ECMamba

Experiment Results

Results on ME and SICE Datasets

1000		ME Dataset [1]						SICE Dataset [5]					
Methods	Under-	Under-exposed		Over-exposed		Average		Under-exposed		Over-exposed		Average	
	PSNR [†]	SSIM↑	PSNR ↑	SSIM↑	PSNR↑	SSIM↑	PSNR ↑	SSIM↑	PSNR ↑	SSIM↑	PSNR ↑	SSIM↑	
ZeroDCE [16] CVPR'20	14.55	0.589	10.40	0.5142	12.06	0.544	16.92	0.633	7.11	0.429	12.02	0.531	
RUAS [24] CVPR'21	13.43	0.681	6.39	0.466	9.20	0.552	16.63	0.559	4.54	0.320	10.59	0.439	
URetinexNet [37] CVPR'	13.85	0.737	9.81	0.673	11.42	0.699	17.39	0.645	7.40	0.454	12.40	0.550	
KinD [44] MM'19	15.51	0.761	11.66	0.730	13.20	0.742	13.43	0.484	7.85	0.478	10.64	0.481	
LLFlow* [34] AAAI'22	22.35	0.858	22.46	0.863	22.42	0.861	21.45	0.679	20.29	0.671	20.87	0.675	
LLFLow-SKF* [38] CVPR	23 22.58	0.859	22.72	0.865	22.66	0.863	21.61	0.671	20.55	0.695	21.08	0.683	
DRBN [40] CVPR'20	19.74	0.829	19.37	0.832	19.52	0.831	17.96	0.677	17.33	0.683	17.65	0.680	
DRBN+ERL [21] CVPR'	19.91	0.831	19.60	0.838	19.73	0.836	18.09	0.674	17.93	0.687	18.01	0.680	
FECNet [20] ECCV'22	22.96	0.860	23.22	0.875	23.12	0.869	22.01	0.674	19.91	0.696	20.96	0.685	
FECNet+ERL [21] CVPR	23 23.10	0.864	23.18	0.876	23.15	0.871	22.35	0.667	20.10	0.689	21.22	0.678	
Retiformer* [6]ICCV'23	22.77	0.862	22.24	0.860	22.45	0.861	22.15	0.665	20.21	0.669	21.18	0.667	
LACT [4] ICCV'23	23.49	0.862	23.68	0.872	23.57	0.869	-	-	-	-	-	-	
Ours	23.64	0.875	23.84	0.882	23.76	0.879	22.87	0.745	21.23	0.727	22.05	0.736	

Results on LOL-series Datasets

Mathada	LOLv	1 [36]	LOLv2-	real [41]	LOLv2-synthetic [41]		
Methods	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	PSNR ↑	SSIM ↑	
Zero-DCE [16] CVPR'20	14.86	0.562	18.06	0.580	-	-	
RUAS [24] CVPR'21	18.23	0.720	18.37	0.723	16.55	0.652	
URetinex-Net [37] CVPR'22	21.33	0.835	21.16	0.840	24.14	0.928	
KinD [44] MM 19	20.86	0.790	14.74	0.641	13.29	0.578	
LLFlow [34] AAAI'22	25.19	0.870	26.53	0.892	26.08	0.940	
LLFlow-SKF [38] CVPR'23	26.80	0.879	28.19	0.905	28.86	0.953	
DRBN [40] CVPR'20	19.39	0.817	20.29	0.831	23.22	0.927	
DRBN+ERL [21] CVPR'23	19.84	0.830	-	-	-	-	
FECNet [20] ECCV'22	22.03	0.836	20.29	0.831	23.22	0.927	
FECNet+ERL [21] CVPR'23	21.08	0.829	-	= 1	-	-	
Retiformer [6] ICCV'23	25.16	0.845	22.80	0.840	25.67	0.930	
LACT* [4] ICCV'23	26.49	0.867	26.95	0.888	27.24	0.941	
ECMamba (Ours)	27.69	0.885	29.24	0.908	29.94	0.959	

Qualitative Results

More details can be found on Github. Thank you for watching!

https://github.com/LowlevelAl/ECMamba