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B Initialization: train a baseline dense model devoid of any expert structure.

B Low-Dimension Clustering: use a Gaussian random initialized matrix to
project embeddings to a low-dimensional space, and perform clustering
algorithm in all layers.

Select Layer: introduce MoE on layers with larger cluster distance-radii ratio.
Expert number is equal to the cluster number.

Dispatch: dispatch new data to its nearest cluster i = argmin’;_; |[v" — ¢;||/r;
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I Method

B Representation Cluster Structure

B Emerge at early stage in training

B New small outlier cluster may emerge as training progress.

B More clusters in deep layers than

shallow layers

B Long-tail data form small, outlier clusters.
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I Experiments

B Experiment Settings
B Ours: Undergoes a pretrained phase, reading long-tail domain-specific data
once.

Baselines: Pretrained on the same dataset and then continue-pretrained on

domain-specific datasets.

Metrics: Accuracy on downstream domain-specific tasks.




I Experiments

B Results-BERT(110M)

Table 1: Results of strategies applied on BERT

Models Pretrain ppl | Overruling Casehold GAD EUADR SST2 average

BERT/med 37.00 86.67 50.51 67.09 84.23 66.86 | 71.07 = 0.22
BERT/legal 37.00 86.67 50.93 66.83 84.79  65.14 | 70.87 4 0.23
MoE/med 31.00 85.00 50.49 64.52 83.10  64.79 | 69.58 +0.20
MokE/legal 31.00 85.83 50.30 64.32 84.79  63.88 | 69.82 £+ 0.19

Ours/MoA 28.25 86.62 50.94 7290 90.09 66.60 | 73.43 £ 0.18
Ours/MoF 34.64 89.10 50.82 71.65 91.23 67.98 | 74.16 4 0.20

BERT/med exhibited a severe forgetting issue and details will be discussed in the Appendix |A




I Experiments

B Results-GPT(130M)

Table 2: Results of strategies applied on GPT

Models Pretrain ppl | Overruling Casehold GAD EUADR average

GPT/med 55.59 88.33 49.82 71.56 84.23 73.57 £ 0.17
GPT/legal 55.59 89.17 50.58 71.69 81.69 73.53 £ 0.23
MoE/med 40.69 91.25 50.11 72.77 83.38 73.91 = 0.12
MoE/legal 40.69 91.60 49.68 72.66 83.38 73.86 + 0.23

Ours/MoA 42.99 91.68 50.70 71.75 85.91 74.93 £+ 0.08
Ours/MoF 43.38 93.33 51.26 73.30 85.63 75.90 £ 0.19




Experiments

B Results-GPT(330M)

Our method also works well as model scaling up.

Table 3: Results of strategies applied on 330M GPT

Domain Task GPT/tuned MoE/tuned CSE/w/o tune

academic  chem-prot 36.25 36.25 36.25
academic MAG 63.22 64.91 65.47
academic rct-20k 76.95 78.28 80.15
environment clim. det. 78.94 79.90 80.26
environment clim. sent. 66.81 68.31 69.98
financial FPB 16.83 25.00 40.11




I Experiments

B Results-GPT(330M)

Our method learn long-tail domain knowledge without hurting the
performance of general tasks.

Table 8: Results of general tasks tested on GPT 330M trained with 20B tokens

Task Domain Freq. Score | Baseline(tuned) MoE(tuned) Ours(w/o tune)

COLA | general 0.389 69.10 69.10 69.20
QNLI general 0.325 60.17 60.06 59.72
MRPC | general 0.343 70.18 71.75 71.98
QQP general 0.380 73.28 74.47 75.95
SST2 general 0.327 74.50 72.03 76.00

average | general - 69.45(-1.12) 69.48(-1.09) 70.57




I Experiments

B Representation Space Analysis

B Cluster-guided correct dispatching

Embedding Routing Result




I Experiments

B Representation Space Analysis

B Cluster-guided correct dispatching

B Higher gradient consistency on each expert
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Thank you!




