Once Read is Enough: Domain-specific Pretraining-free Language Models with Cluster-guided Sparse Experts for Long-tail Domain Knowledge

Fang Dong, Mengyi Chen, Jixian Zhou, Yubin Shi, Yixuan Chen, Mingzhi Dong, Yujiang Wang, Dongsheng Li, Xiaochen Yang, Rui Zhu, Robert Dick, Qin Lv, Fan Yang, Tun Lu, Ning Gu, Li Shang

Introduction

■ Pretrained models usually fail to expertise in downstream tasks requiring specialized domain knowledge.

Introduction

- Pretrained models usually fail to expertise in downstream tasks requiring specialized domain knowledge.
- Domain-specific information appears significantly less frequently Top 20 Subreddit Count of Reddit Comments Dataset than general knowledge, or long-tail.

■ Data domains show a long-tail distribution.

- Data domains show a long-tail distribution.
- Lower frequency score for domain-specific data
	- Frequency score is defined as average token
		- frequency in a sentence
	- Low-frequency score data are considered long-tail

- Data domains show a long-tail distribution.
- Lower frequency score for domain-specific data
- Data with lower frequency show lower gradient consistency and higher perplexity

Data with lower frequency show lower gradient consistency and higher perplexity

Neural Tangent **K**ernel: $\Theta(\mathcal{X}, \mathcal{X}) = J_{\theta}(\mathcal{X}) J_{\theta}(\mathcal{X})^{\top}$, where Jacobian $J_{\theta} = \nabla_{\theta} f(\mathcal{X}; \theta)$

Analysis

Data with lower frequency show lower gradient consistency and higher perplexity

Neural Tangent **K**ernel: $\Theta(\mathcal{X}, \mathcal{X}) = J_{\theta}(\mathcal{X}) J_{\theta}(\mathcal{X})^{\top}$, where Jacobian $J_{\theta} = \nabla_{\theta} f(\mathcal{X}; \theta)$

PCA on NTK: $\Theta = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top} = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\top}$, and \mathbf{u}_{max} corresponds to the max eigenvalue

Analysis

Data with lower frequency show lower gradient consistency and higher perplexity

Neural Tangent **K**ernel: $\Theta(\mathcal{X}, \mathcal{X}) = J_{\theta}(\mathcal{X}) J_{\theta}(\mathcal{X})^{\top}$, where Jacobian $J_{\theta} = \nabla_{\theta} f(\mathcal{X}; \theta)$

PCA on NTK: $\Theta = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top} = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\top}$, and \mathbf{u}_{max} corresponds to the max eigenvalue

Primary Gradient Direction: $\mathbf{g}_{\theta}(\mathcal{X}) = \mathbf{u}_{max} J_{\theta}(\mathcal{X})$

Analysis

Data with lower frequency show lower gradient consistency and higher perplexity

Neural Tangent **K**ernel: $\Theta(\mathcal{X}, \mathcal{X}) = J_{\theta}(\mathcal{X}) J_{\theta}(\mathcal{X})^{\top}$, where Jacobian $J_{\theta} = \nabla_{\theta} f(\mathcal{X}; \theta)$

PCA on NTK: $\Theta = \mathbf{U}\mathbf{\Lambda}\mathbf{U}^{\top} = \sum_{i=1}^{n} \lambda_i \mathbf{u}_i \mathbf{u}_i^{\top}$, and \mathbf{u}_{max} corresponds to the max eigenvalue

Primary Gradient Direction: $\mathbf{g}_{\theta}(\mathcal{X}) = \mathbf{u}_{max} J_{\theta}(\mathcal{X})$

Gradient Consistency: $GC_{\theta}(X') = \frac{\mathbf{g}_{\theta}(\mathcal{X}) \cdot \mathbf{g}_{\theta}(\mathcal{X}')} {\|\mathbf{g}_{\theta}(\mathcal{X})\| \|\mathbf{g}_{\theta}(\mathcal{X}')\|}$

- Data domains show a long-tail distribution.
- Lower frequency score for domain-specific data
- Data with lower frequency show lower gradient consistency and higher perplexity

- Cluster-guided Sparse Expert:
	- Initialization: train a baseline dense model devoid of any expert structure.

- Cluster-guided Sparse Expert:
	- Initialization: train a baseline dense model devoid of any expert structure.
	- Low-Dimension Clustering: use a Gaussian random initialized matrix to project embeddings to a low-dimensional space, and perform clustering algorithm in all layers.

- Cluster-guided Sparse Expert:
	- Initialization: train a baseline dense model devoid of any expert structure.
	- Low-Dimension Clustering: use a Gaussian random initialized matrix to project embeddings to a low-dimensional space, and perform clustering algorithm in all layers.
	- Select Layer: introduce MoE on layers with larger cluster distance-radii ratio. Expert number is equal to the cluster number.

Cluster-guided Sparse Expert:

- Initialization: train a baseline dense model devoid of any expert structure.
- Low-Dimension Clustering: use a Gaussian random initialized matrix to project embeddings to a low-dimensional space, and perform clustering algorithm in all layers.
- Select Layer: introduce MoE on layers with larger cluster distance-radii ratio. Expert number is equal to the cluster number.
- **Dispatch:** dispatch new data to its nearest cluster $i = \arg \min_{i=1}^{n} ||v' c_i||/r_i$

Cluster-guided Sparse Expert:

- Initialization: train a baseline dense model devoid of any expert structure.
- Low-Dimension Clustering: use a Gaussian random initialized matrix to project embeddings to a low-dimensional space, and perform clustering algorithm in all layers.
- Select Layer: introduce MoE on layers with larger cluster distance-radii ratio. Expert number is equal to the cluster number.
- **Dispatch:** dispatch new data to its nearest cluster $i = \arg \min_{i=1}^n ||v' c_i||/r_i$
- Update Clusters: update center $c_i^{t+1} = \alpha \cdot c_i^t + (1 \alpha) \cdot v^t$

- Representation Cluster Structure
	- Emerge at early stage in training

- Representation Cluster Structure
	- Emerge at early stage in training
	- New small outlier cluster may emerge as training progress.

Representation Cluster Structure

- Emerge at early stage in training
- New small outlier cluster may emerge as training progress.

■ More clusters in deep layers than shallow layers.

Representation Cluster Structure

- Emerge at early stage in training
- New small outlier cluster may emerge as training progress.
- More clusters in deep layers than

shallow layers

■ Long-tail data form small, outlier clusters.

- Experiment Settings
	- Ours: Undergoes a pretrained phase, reading long-tail domain-specific data once.
	- Baselines: Pretrained on the same dataset and then continue-pretrained on domain-specific datasets.
	- Metrics: Accuracy on downstream domain-specific tasks.

Results-BERT(110M)

Table 1: Results of strategies applied on BERT

BERT/med exhibited a severe forgetting issue and details will be discussed in the Appendix A .

■ Results-GPT(130M)

■ Results-GPT(330M)

Our method also works well as model scaling up.

Table 3: Results of strategies applied on 330M GPT

Results-GPT(330M)

Our method learn long-tail domain knowledge without hurting the performance of general tasks.

Table 8: Results of general tasks tested on GPT 330M trained with 20B tokens

Task	Domain	Freq. Score	Baseline(tuned)	MoE(tuned)	Ours(w/o tune)
COLA	general	0.389	69.10	69.10	69.20
QNLI	general	0.325	60.17	60.06	59.72
MRPC	general	0.343	70.18	71.75	71.98
QQP	general	0.380	73.28	74.47	75.95
SST ₂	general	0.327	74.50	72.03	76.00
average	general		$69.45(-1.12)$	$69.48(-1.09)$	70.57

- Representation Space Analysis
	- Cluster-guided correct dispatching

Representation Space Analysis

■ Cluster-guided correct dispatching

■ Higher gradient consistency on each expert

Thank you!