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◼ Domain-specific information appears significantly less frequently 

than general knowledge, or long-tail.
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Neural Tangent Kernel:                                        , where Jacobian

PCA on NTK:                                         , and         corresponds to the max eigenvalue

Primary Gradient Direction:

Gradient Consistency: 
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Method

◼ Cluster-guided Sparse Expert：

◼ Initialization: train a baseline dense model devoid of any expert structure.

◼ Low-Dimension Clustering:  use a Gaussian random initialized matrix to 

project embeddings to a low-dimensional space, and perform clustering 

algorithm in all layers.

◼ Select Layer: introduce MoE on layers with larger cluster distance-radii ratio. 

Expert number is equal to the cluster number.

◼ Dispatch: dispatch new data to its nearest cluster

◼ Update Clusters: update center
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Method

◼ Representation Cluster Structure

◼ Emerge at early stage in training

◼ New small outlier cluster may emerge as training progress.

◼ More clusters in deep layers than

shallow layers

◼ Long-tail data form small, outlier clusters.



Experiments

◼ Experiment Settings

◼ Ours: Undergoes a pretrained phase, reading long-tail domain-specific data 

once.

◼ Baselines: Pretrained on the same dataset and then continue-pretrained on 

domain-specific datasets.

◼ Metrics：Accuracy on downstream domain-specific tasks.
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Experiments

◼ Results-GPT(330M)

Our method learn long-tail domain knowledge without hurting the 

performance of general tasks.
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Experiments

◼ Representation Space Analysis

◼ Cluster-guided correct dispatching

◼ Higher gradient consistency on each expert

Ours MoE baseline



Thank you!


