

Learning Cooperative Trajectory Representations for Motion Forecasting

Hongzhi Ruan, Haibao Yu, Wenxian Yang, Siqi Fan, Zaiqing Nie

NeurIPS 2024

Why Cooperative Motion Forecasting

- Most of the existing works pay more attention to cooperative perception, mainly focusing on single-frame cooperation to enhance perception ability.
- Motion forecasting is a downstream task of perception, which directly influences the actions of the autonomous vehicle and has not been well explored.

Problem Formulation

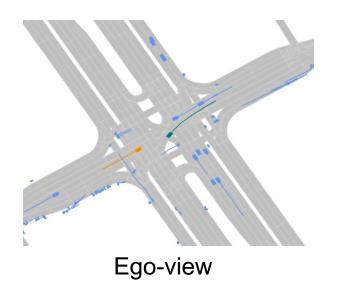
Input

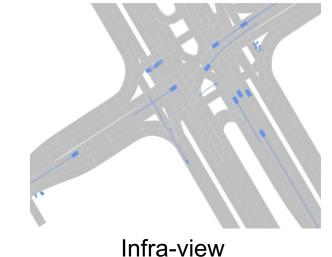
Cooperative Scenario $S = \{T, L\}$

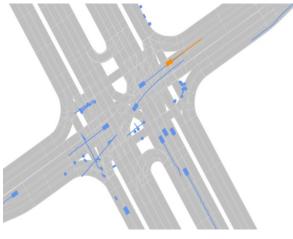
• Multi-source Trajectory

 $\mathbf{T} = \{\mathbf{T}_{ego}, \mathbf{T}_{other}\}$ $\mathbf{T} \in \mathbb{R}^{N_t \times T \times C_t}$ C_t includes id, location, heading, detection bounding etc

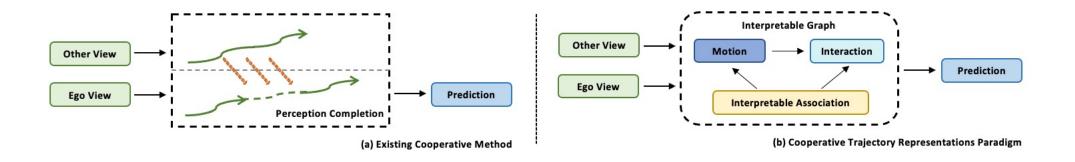
• Vector Map $\mathbf{L} \in \mathbb{R}^{N_l \times 2 \times C_l}$ C_l includes location and road type etc


Output

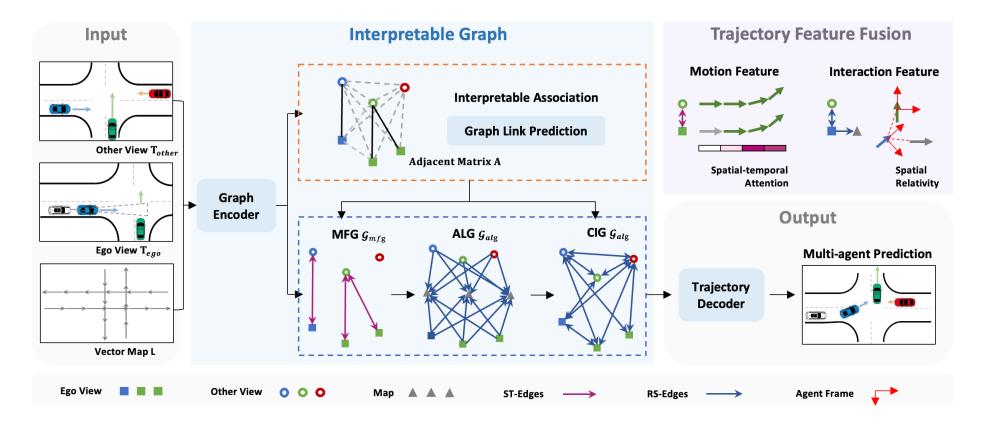

• K future trajectories of the target agent $\mathcal{O} = \{(\mathbf{p}_k^1, \mathbf{p}_k^2, \cdots, \mathbf{p}_k^H)\}_{k=1}^{\mathcal{K}}, \mathbf{p}_k^t = (x_k^t, y_k^t)$


Challenges of Cooperative Motion Forecasting

- Observations of the agents from different views may different due to various sensor perspectives and configurations;
- In the cooperative scenario, there are multi-view observations of multi-agents, and the redundant data need to be leveraged interpretably.

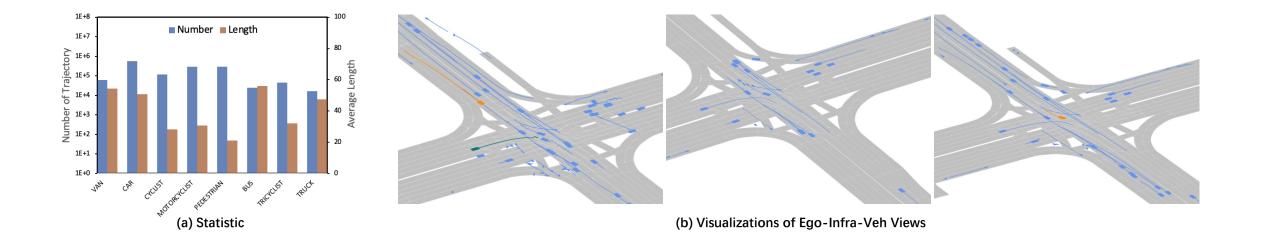


Veh-view


Main Idea

- Existing single-frame methods obtain the agent state at each frame individually, failing to sufficiently model the historical behavior.
- Our research pioneers the exploration of trajectory-based feature fusion for cooperative motion forecasting.

V2X-Graph Overview



- Forecasting-oriented cooperative trajectory representations of motion and interaction features.
- Graph-guided interpretable cross-view feature fusion.

V2X-Traj Dataset

- The first real-world and public V2X motion forecasting dataset, containing V2V and V2I in every scenario.
- It comprises 10,102 scenarios in challenging intersections, with each scenario lasting for 8 seconds.

Experimental Results

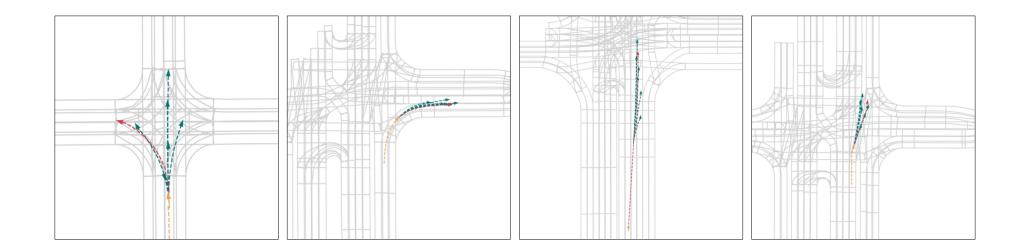
JUIU									
	Method	DenseTNT[13]		HiV7	[58]	V2X-Graph			
		Vehicle-only	PP-VIC[51]	Vehicle-only	PP-VIC[51]	Vehicle-only	PP-VIC[51]	Feature Fusion	
	minADE	1.71	1.84	1.28	1.12	1.16	1.12	1.05	
	minFDE	2.43	2.56	2.15	1.97	2.04	1.98	1.79	
	MR	0.27	0.28	0.31	0.30	0.30	0.30	0.25	

Cooperative method comparison on V2X-Seq

- Perception completion leads to error propagation, resulting in performance degradation of motion forecasting.
- V2X-Graph demonstrates its effectiveness with clear performance improvements over single-frame methods.

Experimental Results

Graph-based methods comparison on V2X-Traj


Method	Vehicle-only			V2V			V2I			V2V&I		
Meulou	minADE	minFDE	MR	minADE	minFDE	MR	minADE	minFDE	MR	minADE	minFDE	MR
DenseTNT[13]	1.23	2.09	0.25	1.20	2.04	0.25	1.32	2.34	0.29	1.26	2.24	0.28
HDGT[19]	0.91	1.48	0.14	0.94	1.57	0.17	0.94	1.59	0.16	0.94	1.56	0.17
V2X-Graph	0.90	1.56	0.17	0.77	1.26	0.12	0.80	1.30	0.13	0.72	1.13	0.11

- V2X-Graph outperforms the compared methods by large margins in all cooperative settings.
- The method has the potential to achieve further improved performance in more views.

Experimental Results

Qualitative Results

Thanks for Watching!