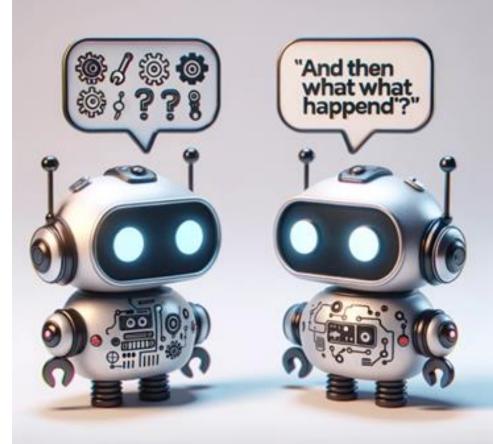
Semantics and Spatiality of Emergent Communication

Rotem Ben Zion, Boaz Carmeli, Orr Paradise, Yonatan Belinkov

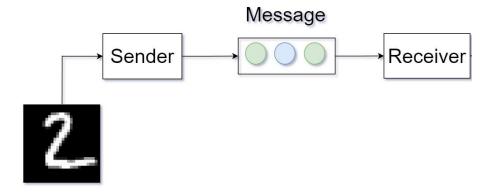
December 2024

Emergent Communication

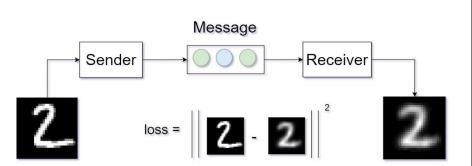
Language as a side product of collaboration

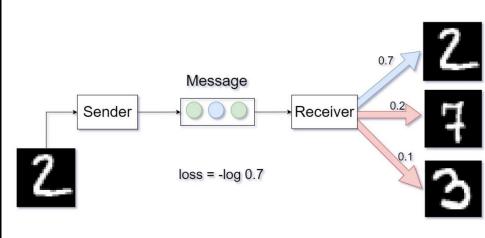

Active communication

Multi-modal LM training



Insights into language evolution


Lewis games



Lewis games

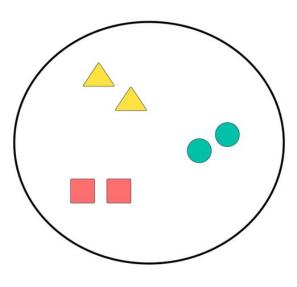
Reconstruction

Discrimination

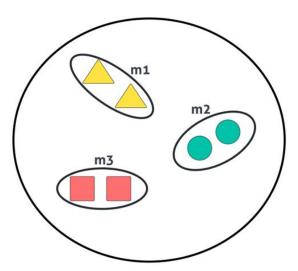
A central goal of EC

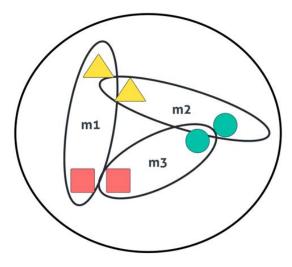
Developing emergent communication protocols with properties of natural language

Emergent Communication is counter-intuitive


"Not compositional" ~Kottur, Moura, Lee, Batra (2017)

"Anti-efficient" ~Chaabouni, Kharitonov, Dupoux, Baroni (2019)


"Semantic consistency" ~This paper


Semantic consistency

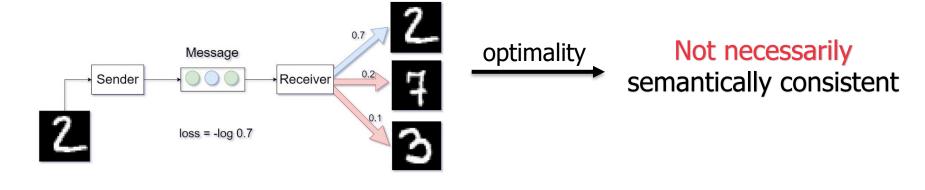
Input space

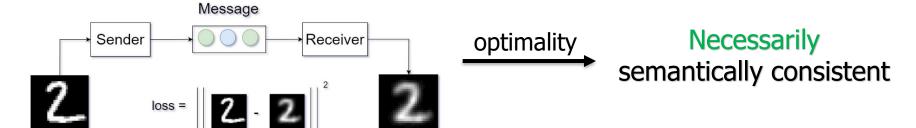
Semantically consistent mapping

Semantically inconsistent mapping

Semantic consistency definition

On average, inputs mapped to the same message are more similar than random inputs.

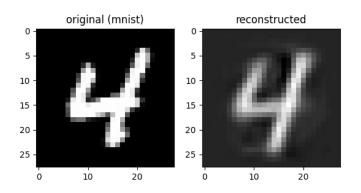

$$\mathbb{E}_{x_1, x_2 \sim X} \left[\|x_1 - x_2\|^2 \mid S_{\theta}(x_1) = S_{\theta}(x_2) \right] < \mathbb{E}_{x_1, x_2 \sim X} \left[\|x_1 - x_2\|^2 \right]$$


This can be simplified into:

$$\mathbb{E}_{m \sim S_{\theta}(X)} \left[\operatorname{Var} \left[X \mid S_{\theta}(X) = m \right] \right] < \operatorname{Var} \left[X \right]$$

Formal results

Other formal results


- Interpretable equivalent objectives.
- Variations of both games.
- Spatial meaningfulness analysis.

Experiments - MNIST

Reconstruction

Channel message [6, 9, 5, 6]

Discrimination

Channel message [1, 1, 8, 4]

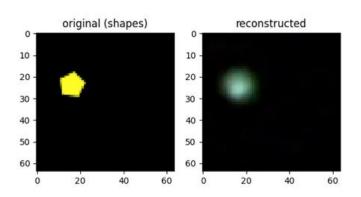
candidates score: 0.929

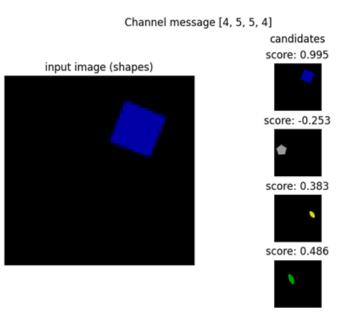
2

score: 0.211

score: -0.080

score: -0.098


input image (mnist)


Experiments - Shapes

Reconstruction

Channel message [8, 8, 3, 3]

Discrimination

Message variance

Table 1: Empirical results on Shapes, averaged over five randomly initialized training runs.

				Msg Var ↓	
EC setup	Uniqe Msgs	Disc. accuracy ↑	TopSim ↑	Trained	Rand
Reconstruction Discrimination	306.60 ± 28.52 251.60 ± 29.53	31.64 ± 2.51 61.96 ± 4.78	$0.34 \pm 0.02 \\ 0.09 \pm 0.01$	$1334.38 \pm 78.05 \\ 2280.24 \pm 157.38$	$2554.77 \pm 108.19 2793.65 \pm 115.45$

Other empirical results

- A supervised setting: message purity.
- Spatial meaningfulness experiments.
- Message variance vs. compositionality measures.

Summary: our contributions

- **Semantic consistency**: a prerequisite to meaningful communication.
- Reconstruction and discrimination: formal and empirical analysis.
- Findings:
 - The discrimination objective can lead to counter-intuitive solutions.
 - The reconstruction objective induces consistent messages.

