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What is the problem of interest?

▶ Consider the general unconstrained minimization problem

min
x∈Rd

f (x),

• Assumption 1: f (x) is strongly convex with µ > 0.

• Assumption 2: The gradient ∇f (x) is Lipschitz continuous with L > 0.

• Assumption 3: The Hessian ∇2f (x) is Lipschitz continuous with M > 0.

▶ Goal: Finding the global complexity of classic quasi-Newton methods for this setting
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Quasi-Newton Methods

▶ Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating
the function’s curvature and using a preconditioner

xk+1 = xk − ηkB−1
k ∇f (xk)

▶ When Bk ≈ ∇2f (xk) they mimic Newton’s method
▶ Only use gradient to construct Bk ⇒ Still first-order methods

▶ Main ideas:
• Proximity condition: Keep Bk and Bk+1 close
• Secant condition: Bk+1sk = yk where sk = xk+1 − xk , yk = ∇f (xk+1)−∇f (xk)

Bk+1 = argmin ∥B − Bk∥V

s.t. B sk = yk , B ⪰ 0
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BFGS quasi-Newton Method

▶ Focus on the BFGS quasi-Newton method:

Bk+1 = Bk − Bksks⊤
k Bk

s⊤
k Bksk

+ yky⊤
k

s⊤
k yk

.

▶ Define Hk = B−1
k . Using Sherman-Morrison-Woodbury formula, we have

Hk+1 =
(

I − sky⊤
k

y⊤
k sk

)
Hk

(
I − yks⊤

k
s⊤
k yk

)
+ sks⊤

k
y⊤

k sk
.
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State-of-the-art Results on Standard Quasi-Newton Methods

▶ Classic results have shown asymptotic local superlinear convergence for QN methods:
when ∥xk − x∗∥ is small,

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥

= 0

• Local superlinear rate [Broyden-Dennis-Moré’73][Dennis-Moré’74]
• Global and superlinear rate with exact linesearch [Powell’71][ Dixon’72]
• Global and superlinear rate with inexact linesearch [Powell’76][Bryd-Nocedal-Yuan’87]
• Many other works: [Griewank-Toint’82; Dennis-Martinez-Tapia’89; Yuan’91; Al-Baali’98;

Li-Fukushima’99; Yabe-Ogasawara-Yoshino’07; M-Eisen-Ribeiro’18; Gao-Goldfarb’19]
▶ However, they are all asymptotic and fail to provide an explicit convergence rate
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Recent Results on Quasi-Newton Methods
▶ Recent results show explicit non-asymptotic local superlinear rate for quasi-Newton

methods

▶ Rodomanov-Nesterov’20 and Jin-M’20 concurrently but using different Lyapunov
functions showed superlinear rates of the form O((1/

√
k)k)

cond. on ∥x0−x∗∥ cond. on B0 rate

[Jin-M’20] O
(

1√
d

)
B0 ≈ ∇2f (x0) O

(
1√
k

)k

[Rodomanov-Nesterov’20] O
(

1
d

)
∇2f (x) ⪯ B0 ⪯ κ∇2f (x) O

(√
d ln κ

k

)k

Table: Definition κ = L/µ

▶ These results are only local, it is unclear how to extend them into global guarantees
⇒ The condition on B0 may not hold when ∥x0−x∗∥ becomes small

▶ Moreover, there is no global result matching the linear rate of GD
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Contributions

▶ One of the first global non-asymptotic analysis of classic quasi-Newton methods
• Arbitrary initial point x0 ∈ Rd and initial Hessian approximation B0 ∈ Sd

++

▶ Focus on the Armijo-Wolfe Line Search scheme: if dk = −B−1
k ∇f (xk),

f (xk + ηkdk) ≤ f (xk) + αηk∇f (xk)⊤dk ,

∇f (xk + ηkdk)⊤dk ≥ β∇f (xk)⊤dk ,

where α and β satisfy 0 < α < β < 1 and 0 < α < 1
2 .
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Summary of Results for BFGS with Armijo-Wolfe LS

Matrix Convergence Phase Convergence Rate Starting moment

B0 Linear phase
(
1 − 1

κ

)k
Ψ(B̄0)

B0 Superlinear phase
(

Ψ(B̃0)+C0Ψ(B̄0)+C0κ
k

)k
Ψ(B̃0) + C0Ψ(B̄0) + C0κ

LI Linear phase
(
1 − 1

κ

)k
1

LI Superlinear phase
(

dκ+C0κ
k

)k
dκ + C0κ

µI Linear phase
(
1 − 1

κ

)k
d log κ

µI Superlinear phase
(

(1+C0)d log κ+C0κ
k

)k
(1 + C0)d log κ + C0κ

▶ Here C0 := M
µ

3
2

√
2(f (x0) − f (x∗)) and Ψ(A) := Tr(A) − log Det(A) − d
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Notation and Definitions
▶ Introduce a weight matrix P ∈ Sd

++ and define

ĝk = P− 1
2 gk , ŷk = P− 1

2 yk , ŝk = P
1
2 sk , B̂k = P− 1

2 BkP− 1
2 .

▶ The weighted BFGS update still holds B̂k+1 = B̂k − B̂k ŝk ŝ⊤
k B̂k

ŝ⊤
k B̂k ŝk

+ ŷk ŷ⊤
k

ŝ⊤
k ŷk

.

▶ P plays critical roles in the proof of non-asymptotic convergence rates.
⇒ Choose P = LI to prove the linear convergence rates.
⇒ Choose P = ∇2f (x∗) to prove the superlinear convergence rates.

▶ Define the following terms

p̂k := f (xk) − f (xk+1)
−ĝ⊤

k ŝk
, q̂k := ∥ĝk∥2

f (xk) − f (x∗) , m̂k := ŷ⊤
k ŝk

∥ŝk∥2 , n̂k = ŷ⊤
k ŝk

−ĝ⊤
k ŝk

.

cos(θk) := g⊤
k B−1

k gk

∥gk∥∥B−1
k gk∥
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ŝ⊤
k ŷk
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k ŝk
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Key Lemma

Lemma: [Jin-Jiang-M, 2024]

Let {xk}k≥0 be the iterates generated by the BFGS method with AW line search.
Given a weight matrix P ∈ Sd

++, for any k ≥ 1, we have

f (xk) − f (x∗)
f (x0) − f (x∗) ≤

(
1 −

( k−1∏
i=0

p̂i q̂i n̂i
cos2(θ̂i)

m̂i

) 1
k
)k

.

▶ Fundamental framework in the whole convergence analysis.
▶ Used for the proof of both linear and superlinear convergence rates.
▶ Need to lower bound the following three products

k−1∏
i=0

p̂i ,
k−1∏
i=0

q̂i ,
k−1∏
i=0

n̂i ,
k−1∏
i=0

cos2(θ̂i)
m̂i
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Lower bounds on p̂k and n̂k

Lemma: [Jin-Jiang-M, 2024]

For the BFGS method with Armijo-Wolfe line search, we have

f (xk) − f (xk+1)
−g⊤

k sk
≥ α,

y⊤
k sk

−g⊤
k sk

≥ 1 − β, and f (xk+1) ≤ f (xk).

Given p̂k := f (xk)−f (xk+1)
−ĝ⊤

k ŝk
and n̂k = ŷ⊤

k ŝk
−ĝ⊤

k ŝk

Lemma: [Jin-Jiang-M, 2024]

Then, for any k ≥ 0 and any weight matrix P ∈ Sd
++

p̂k ≥ α, n̂k ≥ 1 − β

Qiujiang Jin, Ruichen Jiang, Aryan Mokhtari Global Convergence Analysis of BFGS 11 / 21
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Lower bounds on q̂k

▶ Define Ck as the measurement of distance between xk and x∗

Ck := M
µ

3
2

√
2(f (xk) − f (x∗)).

Lemma: [Jin-Jiang-M, 2024]

Recall the definition q̂k = ∥ĝk∥2

f (xk)−f (x∗) . Then we have the following results:
(a) If we choose P = LI, then q̂k ≥ 2/κ.
(b) If we choose P = ∇2f (x∗), then q̂k ≥ 2/(1 + Ck)2.

▶ Depends on the choice of the weight matrix P ∈ Sd
++.
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Lower bounds on cos2(θ̂i)
m̂i

▶ Define the trace and log-determinant potential function for any A ∈ Sd
++ as

Ψ(A) := Tr(A) − log Det(A) − d .

▶ The Bregman divergence between matrix A and the identity matrix I.
▶ Ψ(A) ≥ 0 and Ψ(A) = 0 holds if and only if A = I.

Lemma: [Jin-Jiang-M, 2024]

For the BFGS method, we have that
(a) If P = LI, then

∏k−1
i=0

cos2(θ̂i )
m̂i

≥ e−Ψ(B̄0).

(b) If P = ∇2f (x∗), then
∏k−1

i=0
cos2(θ̂i )

m̂i
≥ e−Ψ(B̂0)−

∑k−1
i=0 Ci .
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Global Linear Convergence Rates

▶ For the global linear results we use P = LI, hence B̄k = (1/L)Bk

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe line search. For any initial point x0 ∈ Rd and any
initial Hessian approximation B0 ∈ Sd

++, the following global convergence rates hold,

f (xk) − f (x∗)
f (x0) − f (x∗) ≤

(
1 − e− Ψ(B̄0)

k
2α(1 − β)

κ

)k
,

Special Cases:

▶ B0 = LI: For all k ≥ 1 f (xk)−f (x∗)
f (x0)−f (x∗) ≤

(
1 − 2α(1−β)

κ

)k
.

▶ B0 = µI: For all k ≥ d log κ f (xk)−f (x∗)
f (x0)−f (x∗) ≤

(
1 − 2α(1−β)

3κ

)k
.

Qiujiang Jin, Ruichen Jiang, Aryan Mokhtari Global Convergence Analysis of BFGS 14 / 21



Global Linear Convergence Rates

▶ For the global linear results we use P = LI, hence B̄k = (1/L)Bk

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe line search. For any initial point x0 ∈ Rd and any
initial Hessian approximation B0 ∈ Sd

++, the following global convergence rates hold,

f (xk) − f (x∗)
f (x0) − f (x∗) ≤

(
1 − e− Ψ(B̄0)

k
2α(1 − β)

κ

)k
,

Special Cases:

▶ B0 = LI: For all k ≥ 1 f (xk)−f (x∗)
f (x0)−f (x∗) ≤

(
1 − 2α(1−β)

κ

)k
.

▶ B0 = µI: For all k ≥ d log κ f (xk)−f (x∗)
f (x0)−f (x∗) ≤

(
1 − 2α(1−β)

3κ

)k
.

Qiujiang Jin, Ruichen Jiang, Aryan Mokhtari Global Convergence Analysis of BFGS 14 / 21



Condition Number Independent Linear Rate
▶ Replace the bounds for cos2(θ̂i )

m̂i
and q̂i by the ones obtained using P = ∇2f (x∗)

f (xk) − f (x∗)
f (x0) − f (x∗) ≤

(
1 − 2α(1 − β)e−

Ψ(B̃0)+3
∑k−1

i=0 Ci
k

)k

, ∀k ≥ 1.

▶ Now by bounding
∑k−1

i=0 Ci using the previous linear result, we obtain the following

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe LS. For any x0 ∈ Rd and any B0 ∈ Sd
++, if

k ≥ Ψ(B̃0) + 3C0Ψ(B̄0) + 9
α(1−β)C0κ we have

f (xk) − f (x∗)
f (x0) − f (x∗) ≤

(
1 − 2α(1 − β)

3

)k
.

▶ If we set B0 = LI, the rate holds for k ≥ dκ + 9
α(1−β)C0κ,

▶ If we set B0 = µI, the rate holds for k ≥ (1 + 3C0)d log κ + 9
α(1−β)C0κ.
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Requirement for SuperLinear Rate

▶ To achieve a superlinear result we need tighter bounds: p̂k ≥ α and n̂k ≥ 1 − β

▶ We show that if η = 1 satisfies AW conditions, tighter bounds are achievable.

Lemma: [Jin-Jiang-M, 2024]

If ηk = 1 satisfies the conditions for Armijo-Wolfe LS, then we have

p̂k ≥ 1 − 1 + Ck
2 , n̂k ≥ 1

(1 + Ck) .

Lemma: (Informal) [Jin-Jiang-M, 2024]

For k ≥ max
{

Ψ(B̄0), 3κ
α(1−β) log C0

δ1

}
, the number of time indices for which η = 1

does not satisfy the AWLS conditions is upper bounded.
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Global Superlinear Rate

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe LS. For any x0 ∈ Rd and any B0 ∈ Sd
++, we have

f (xk) − f (x∗)
f (x0) − f (x∗) = O

(
Ψ(B̃0) + (1 + C0)Ψ(B̄0) + (1 + C0)κ

k

)k

,

▶ If B0 = LI BFGS achieves a rate of O((dκ+C0κ
k )k)

▶ If B0 = µI BFGS achieves a rate of O((C0d log κ+C0κ
k )k).

▶ Hence, the superlinear result for B0 = µI outperforms the rate for B0 = LI when
C0 log κ ≪ κ.
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Numerical Experiments

▶ We focus on a hard cubic objective function, i.e.,

f (x) = α

12

(d−1∑
i=1

g(v⊤
i x − v⊤

i+1x) − βv⊤
1 x
)

+ λ

2 ∥x∥2,

and g : R → R is defined as

g(w) =
{1

3 |w |3 |w | ≤ ∆,

∆w2 − ∆2|w | + 1
3∆3 |w | > ∆,

where α, β, λ, ∆ ∈ R are hyper-parameters and {vi}n
i=1 are standard orthogonal unit

vectors in Rd .

▶ This hard cubic function is used to establish a lower bound for second-order methods.
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Numerical Experiments
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(a) d = 100, κ = 100.
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(b) d = 100, κ = 1000.
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(c) d = 300, κ = 100.

Figure: Convergence rates of BFGS with B0 = LI, B0 = µI, B0 = I, B0 = cI and gradient descent to
hard cubic objective function. c = s⊤y

∥s∥2 , with s = x2 − x1, y = ∇f (x2) − ∇f (x1), and x1, x2 as two
randomly generated vectors.
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Numerical Experiments
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(a) d = 300, κ = 1000.
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(b) d = 600, κ = 100.
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(c) d = 600, κ = 1000.

Figure: Convergence rates of BFGS with B0 = LI, B0 = µI, B0 = I, B0 = cI and gradient descent to
hard cubic objective function. c = s⊤y

∥s∥2 , with s = x2 − x1, y = ∇f (x2) − ∇f (x1), and x1, x2 as two
randomly generated vectors.
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Discussions on the line search complexity

▶ We proposed a Log Bisection Algorithm for finding a stepsize

▶ We showed when we run BFGS for N iterations:
⇒ then the total number of function and gradient evaluations is

O(N max{log d , log κ, log C0})

▶ With more refine analysis, we can show that if N = Ω(Ψ(B̃0) + (Ψ(B̄0) + 3
α(1−β)κ)C0)

⇒ then the total line search complexity becomes O(N).
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