Non-asymptotic Global Convergence Analysis of BFGS with the Armijo-Wolfe Line Search

Qiujiang Jin, Ruichen Jiang, Aryan Mokhtari

ECE Department, UT Austin

Neurips 2024

► Consider the general unconstrained minimization problem

$$\min_{x\in\mathbb{R}^d} f(x),$$

• **Assumption 1:** f(x) is strongly convex with $\mu > 0$.

► Consider the general unconstrained minimization problem

$$\min_{x\in\mathbb{R}^d} f(x),$$

- **Assumption 1:** f(x) is strongly convex with $\mu > 0$.
- **Assumption 2:** The gradient $\nabla f(x)$ is Lipschitz continuous with L > 0.

► Consider the general unconstrained minimization problem

$$\min_{x\in\mathbb{R}^d} f(x),$$

- **Assumption 1:** f(x) is strongly convex with $\mu > 0$.
- **Assumption 2:** The gradient $\nabla f(x)$ is Lipschitz continuous with L > 0.
- Assumption 3: The Hessian $\nabla^2 f(x)$ is Lipschitz continuous with M > 0.

► Consider the general unconstrained minimization problem

$$\min_{x\in\mathbb{R}^d} f(x),$$

- **Assumption 1:** f(x) is strongly convex with $\mu > 0$.
- **Assumption 2:** The gradient $\nabla f(x)$ is Lipschitz continuous with L > 0.
- **Assumption 3:** The Hessian $\nabla^2 f(x)$ is Lipschitz continuous with M > 0.
- ▶ Goal: Finding the global complexity of classic quasi-Newton methods for this setting

$$x_{k+1} = x_k - \eta_k B_k^{-1} \nabla f(x_k)$$

Quasi-Newton (QN) methods aim at speeding up GD-type methods by approximating the function's curvature and using a preconditioner

$$x_{k+1} = x_k - \eta_k B_k^{-1} \nabla f(x_k)$$

▶ When $B_k \approx \nabla^2 f(x_k)$ they mimic Newton's method

$$x_{k+1} = x_k - \eta_k B_k^{-1} \nabla f(x_k)$$

- ▶ When $B_k \approx \nabla^2 f(x_k)$ they mimic Newton's method
- ▶ Only use gradient to construct $B_k \Rightarrow$ Still first-order methods

$$x_{k+1} = x_k - \eta_k B_k^{-1} \nabla f(x_k)$$

- ▶ When $B_k \approx \nabla^2 f(x_k)$ they mimic Newton's method
- ▶ Only use gradient to construct $B_k \Rightarrow$ Still first-order methods
- Main ideas:
 - Proximity condition: Keep B_k and B_{k+1} close
 - <u>Secant condition</u>: $B_{k+1}s_k = y_k$ where $s_k = x_{k+1} x_k$, $y_k = \nabla f(x_{k+1}) \nabla f(x_k)$

$$x_{k+1} = x_k - \eta_k B_k^{-1} \nabla f(x_k)$$

- ▶ When $B_k \approx \nabla^2 f(x_k)$ they mimic Newton's method
- ▶ Only use gradient to construct $B_k \Rightarrow$ Still first-order methods
- Main ideas:
 - Proximity condition: Keep B_k and B_{k+1} close
 - Secant condition: $B_{k+1}s_k = y_k$ where $s_k = x_{k+1} x_k$, $y_k = \nabla f(x_{k+1}) \nabla f(x_k)$

$$B_{k+1} = \operatorname{argmin} \|B - B_k\|_{\mathbf{V}}$$

s.t. $B s_k = y_k, \quad B \succeq \mathbf{0}$

BFGS quasi-Newton Method

► Focus on the BFGS quasi-Newton method:

$$B_{k+1} = B_k - \frac{B_k s_k s_k^\top B_k}{s_k^\top B_k s_k} + \frac{y_k y_k^\top}{s_k^\top y_k}.$$

BFGS quasi-Newton Method

► Focus on the BFGS quasi-Newton method:

$$B_{k+1} = B_k - \frac{B_k s_k s_k^\top B_k}{s_k^\top B_k s_k} + \frac{y_k y_k^\top}{s_k^\top y_k}.$$

▶ Define $H_k = B_k^{-1}$. Using Sherman-Morrison-Woodbury formula, we have

$$H_{k+1} = \left(I - \frac{s_k y_k^\top}{y_k^\top s_k}\right) H_k \left(I - \frac{y_k s_k^\top}{s_k^\top y_k}\right) + \frac{s_k s_k^\top}{y_k^\top s_k}.$$

State-of-the-art Results on Standard Quasi-Newton Methods

Classic results have shown asymptotic local superlinear convergence for QN methods: when $||x_k - x^*||$ is small,

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

State-of-the-art Results on Standard Quasi-Newton Methods

Classic results have shown asymptotic local superlinear convergence for QN methods: when $||x_k - x^*||$ is small,

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

- Local superlinear rate [Broyden-Dennis-Moré'73][Dennis-Moré'74]
- Global and superlinear rate with exact linesearch [Powell'71][Dixon'72]
- Global and superlinear rate with inexact linesearch [Powell'76][Bryd-Nocedal-Yuan'87]
- Many other works: [Griewank-Toint'82; Dennis-Martinez-Tapia'89; Yuan'91; Al-Baali'98; Li-Fukushima'99: Yabe-Ogasawara-Yoshino'07: M-Eisen-Ribeiro'18: Gao-Goldfarb'19]

State-of-the-art Results on Standard Quasi-Newton Methods

Classic results have shown asymptotic local superlinear convergence for QN methods: when $||x_k - x^*||$ is small,

$$\lim_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} = 0$$

- Local superlinear rate [Broyden-Dennis-Moré'73][Dennis-Moré'74]
- Global and superlinear rate with exact linesearch [Powell'71][Dixon'72]
- Global and superlinear rate with inexact linesearch [Powell'76][Bryd-Nocedal-Yuan'87]
- Many other works: [Griewank-Toint'82; Dennis-Martinez-Tapia'89; Yuan'91; Al-Baali'98; Li-Fukushima'99: Yabe-Ogasawara-Yoshino'07: M-Eisen-Ribeiro'18: Gao-Goldfarb'19]
- ▶ However, they are all asymptotic and fail to provide an explicit convergence rate

► Recent results show explicit non-asymptotic local superlinear rate for quasi-Newton methods

- Recent results show explicit non-asymptotic local superlinear rate for quasi-Newton methods
- ► Rodomanov-Nesterov'20 and Jin-M'20 concurrently but using different Lyapunov functions showed superlinear rates of the form $O((1/\sqrt{k})^k)$

- Recent results show explicit non-asymptotic local superlinear rate for quasi-Newton methods
- ► Rodomanov-Nesterov'20 and Jin-M'20 concurrently but using different Lyapunov functions showed superlinear rates of the form $O((1/\sqrt{k})^k)$

	cond. on $ x_0 - x^* $	cond. on B_0	rate
[Jin-M'20]	$\mathcal{O}\left(\frac{1}{\sqrt{d}}\right)$	$B_0 \approx \nabla^2 f(x_0)$	$\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)^k$
[Rodomanov-Nesterov'20]	$\mathcal{O}\left(rac{1}{d} ight)$	$\nabla^2 f(x) \leq B_0 \leq \kappa \nabla^2 f(x)$	$\mathcal{O}\left(\sqrt{\frac{d\ln\kappa}{k}}\right)^k$

Table: Definition $\kappa = L/\mu$

- Recent results show explicit non-asymptotic local superlinear rate for quasi-Newton methods
- ► Rodomanov-Nesterov'20 and Jin-M'20 concurrently but using different Lyapunov functions showed superlinear rates of the form $O((1/\sqrt{k})^k)$

	cond. on $ x_0 - x^* $	cond. on B_0	rate
[Jin-M'20]	$\mathcal{O}\left(\frac{1}{\sqrt{d}}\right)$	$B_0 \approx \nabla^2 f(x_0)$	$\mathcal{O}\left(\frac{1}{\sqrt{k}}\right)^k$
[Rodomanov-Nesterov'20]	$\mathcal{O}\left(rac{1}{d} ight)$	$\nabla^2 f(x) \leq B_0 \leq \kappa \nabla^2 f(x)$	$\mathcal{O}\left(\sqrt{\frac{d\ln\kappa}{k}}\right)^k$

Table: Definition $\kappa = L/\mu$

- These results are only local, it is unclear how to extend them into global guarantees
 - \Rightarrow The condition on B_0 may not hold when $||x_0-x^*||$ becomes small
- Moreover, there is no global result matching the linear rate of GD

Contributions

- ▶ One of the first global non-asymptotic analysis of classic quasi-Newton methods
 - ullet Arbitrary initial point $x_0 \in \mathbb{R}^d$ and initial Hessian approximation $B_0 \in \mathbb{S}^d_{++}$

Contributions

- ▶ One of the first global non-asymptotic analysis of classic quasi-Newton methods
 - ullet Arbitrary initial point $x_0 \in \mathbb{R}^d$ and initial Hessian approximation $B_0 \in \mathbb{S}^d_{++}$
- Focus on the Armijo-Wolfe Line Search scheme: if $d_k = -B_k^{-1} \nabla f(x_k)$,

$$f(x_k + \eta_k d_k) \leq f(x_k) + \alpha \eta_k \nabla f(x_k)^{\top} d_k$$

$$\nabla f(x_k + \eta_k d_k)^{\top} d_k \geq \beta \nabla f(x_k)^{\top} d_k,$$

where α and β satisfy 0 < $\alpha < \beta < 1$ and 0 < $\alpha < \frac{1}{2}.$

Summary of Results for BFGS with Armijo-Wolfe LS

Matrix	Convergence Phase	Convergence Rate	Starting moment
B_0	Linear phase	$\left(1-rac{1}{\kappa} ight)^k$	$\Psi(ar{B_0})$
B_0	Superlinear phase	$\left(rac{\Psi(ilde{B_0})\!+\!C_0\Psi(ar{B_0})\!+\!C_0\kappa}{k} ight)^k$	$\Psi(\tilde{B_0}) + C_0 \Psi(\bar{B_0}) + C_0 \kappa$
LI	Linear phase	$\left(1-rac{1}{\kappa} ight)^k$	1
LI	Superlinear phase	$\left(\frac{d\kappa+C_0\kappa}{k}\right)^k$	$d\kappa + C_0\kappa$
μ I	Linear phase	$\left(1-rac{1}{\kappa} ight)^k$	$d\log\kappa$
μ I	Superlinear phase	$\left(\frac{(1+C_0)d\log\kappa+C_0\kappa}{k}\right)^k$	$(1+C_0)d\log\kappa+C_0\kappa$

► Here
$$C_0 := \frac{M}{\mu^{\frac{3}{2}}} \sqrt{2(f(x_0) - f(x_*))}$$
 and $Ψ(A) := \mathbf{Tr}(A) - \log \mathbf{Det}(A) - d$

▶ Introduce a weight matrix $P \in \mathbb{S}_{++}^d$ and define

$$\hat{g}_k = P^{-\frac{1}{2}} g_k, \qquad \hat{y}_k = P^{-\frac{1}{2}} y_k, \qquad \hat{s}_k = P^{\frac{1}{2}} s_k, \qquad \hat{B}_k = P^{-\frac{1}{2}} B_k P^{-\frac{1}{2}}.$$

▶ Introduce a weight matrix $P \in \mathbb{S}_{++}^d$ and define

$$\hat{g}_k = P^{-\frac{1}{2}}g_k, \qquad \hat{y}_k = P^{-\frac{1}{2}}y_k, \qquad \hat{s}_k = P^{\frac{1}{2}}s_k, \qquad \hat{B}_k = P^{-\frac{1}{2}}B_kP^{-\frac{1}{2}}.$$

► The weighted BFGS update still holds

$$\hat{B}_{k+1} = \hat{B}_k - rac{\hat{B}_k \hat{s}_k \hat{s}_k^{\top} \hat{B}_k}{\hat{s}_k^{\top} \hat{B}_k \hat{s}_k} + rac{\hat{y}_k \hat{y}_k^{\top}}{\hat{s}_k^{\top} \hat{y}_k}.$$

▶ Introduce a weight matrix $P \in \mathbb{S}_{++}^d$ and define

$$\hat{g}_k = P^{-\frac{1}{2}}g_k, \qquad \hat{y}_k = P^{-\frac{1}{2}}y_k, \qquad \hat{s}_k = P^{\frac{1}{2}}s_k, \qquad \hat{B}_k = P^{-\frac{1}{2}}B_kP^{-\frac{1}{2}}.$$

- ► The weighted BFGS update still holds $\hat{B}_{k+1} = \hat{B}_k \frac{\hat{B}_k \hat{s}_k \hat{s}_k^\top \hat{B}_k}{\hat{s}_k^\top \hat{B}_k \hat{s}_k} + \frac{\hat{y}_k \hat{y}_k^\top}{\hat{s}_k^\top \hat{v}_k}.$
- P plays critical roles in the proof of non-asymptotic convergence rates.
 - \Rightarrow Choose P = LI to prove the linear convergence rates.
 - \Rightarrow Choose $P = \nabla^2 f(x_*)$ to prove the superlinear convergence rates.

▶ Introduce a weight matrix $P \in \mathbb{S}_{++}^d$ and define

$$\hat{g}_k = P^{-\frac{1}{2}}g_k, \qquad \hat{y}_k = P^{-\frac{1}{2}}y_k, \qquad \hat{s}_k = P^{\frac{1}{2}}s_k, \qquad \hat{B}_k = P^{-\frac{1}{2}}B_kP^{-\frac{1}{2}}.$$

- ► The weighted BFGS update still holds $\hat{B}_{k+1} = \hat{B}_k \frac{\hat{B}_k \hat{s}_k \hat{s}_k^\top \hat{B}_k}{\hat{s}_k^\top \hat{B}_k \hat{s}_k} + \frac{\hat{y}_k \hat{y}_k^\top}{\hat{s}_k^\top \hat{y}_k}.$
- P plays critical roles in the proof of non-asymptotic convergence rates.
 - \Rightarrow Choose P = LI to prove the linear convergence rates.
 - \Rightarrow Choose $P = \nabla^2 f(x_*)$ to prove the superlinear convergence rates.
- ▶ Define the following terms

$$\hat{p}_k := \frac{f(x_k) - f(x_{k+1})}{-\hat{g}_k^\top \hat{s}_k}, \quad \hat{q}_k := \frac{\|\hat{g}_k\|^2}{f(x_k) - f(x_*)}, \quad \hat{m}_k := \frac{\hat{y}_k^\top \hat{s}_k}{\|\hat{s}_k\|^2}, \quad \hat{n}_k = \frac{\hat{y}_k^\top \hat{s}_k}{-\hat{g}_k^\top \hat{s}_k}.$$

$$\cos(\theta_k) := \frac{g_k^{\top} B_k^{-1} g_k}{\|g_k\| \|B_k^{-1} g_k\|}$$

Key Lemma

Lemma: [Jin-Jiang-M, 2024]

Let $\{x_k\}_{k\geq 0}$ be the iterates generated by the BFGS method with AW line search. Given a weight matrix $P\in \mathbb{S}_{++}^d$, for any $k\geq 1$, we have

$$\frac{f(x_k)-f(x_*)}{f(x_0)-f(x_*)}\leq \left(1-\left(\prod_{i=0}^{k-1}\hat{p}_i\hat{q}_i\hat{n}_i\frac{\cos^2(\hat{\theta}_i)}{\hat{m}_i}\right)^{\frac{1}{k}}\right)^k.$$

- ► Fundamental framework in the whole convergence analysis.
- Used for the proof of both linear and superlinear convergence rates.
- ▶ Need to lower bound the following three products

$$\prod_{i=0}^{k-1} \hat{p}_i, \quad \prod_{i=0}^{k-1} \hat{q}_i, \quad \prod_{i=0}^{k-1} \hat{n}_i, \quad \prod_{i=0}^{k-1} \frac{\cos^2(\hat{\theta}_i)}{\hat{m}_i}$$

Lower bounds on \hat{p}_k and \hat{n}_k

Lemma: [Jin-Jiang-M, 2024]

For the BFGS method with Armijo-Wolfe line search, we have

$$\frac{f(x_k) - f(x_{k+1})}{-g_k^\top s_k} \ge \alpha, \qquad \frac{y_k^\top s_k}{-g_k^\top s_k} \ge 1 - \beta, \qquad \text{and} \qquad f(x_{k+1}) \le f(x_k).$$

Lower bounds on \hat{p}_k and \hat{n}_k

Lemma: [Jin-Jiang-M, 2024]

For the BFGS method with Armijo-Wolfe line search, we have

$$\frac{f(\mathsf{x}_k) - f(\mathsf{x}_{k+1})}{-g_k^\top s_k} \geq \alpha, \qquad \frac{y_k^\top s_k}{-g_k^\top s_k} \geq 1 - \beta, \qquad \text{and} \qquad f(\mathsf{x}_{k+1}) \leq f(\mathsf{x}_k).$$

Given
$$\hat{p}_k := \frac{f(x_k) - f(x_{k+1})}{-\hat{g}_k^\top \hat{s}_k}$$
 and $\hat{n}_k = \frac{\hat{y}_k^\top \hat{s}_k}{-\hat{g}_k^\top \hat{s}_k}$

Lemma: [Jin-Jiang-M, 2024]

Then, for any $k \ge 0$ and any weight matrix $P \in \mathbb{S}_{++}^d$

$$\hat{p}_k \geq \alpha, \qquad \hat{n}_k \geq 1 - \beta$$

Lower bounds on \hat{q}_k

▶ Define C_k as the measurement of distance between x_k and x_*

$$C_k := \frac{M}{\mu^{\frac{3}{2}}} \sqrt{2(f(x_k) - f(x_*))}.$$

Lemma: [Jin-Jiang-M, 2024]

Recall the definition $\hat{q}_k = \frac{\|\hat{g}_k\|^2}{f(x_k) - f(x_*)}$. Then we have the following results:

- (a) If we choose P = LI, then $\hat{q}_k \geq 2/\kappa$.
- (b) If we choose $P = \nabla^2 f(x_*)$, then $\hat{q}_k \ge 2/(1 + C_k)^2$.
- ▶ Depends on the choice of the weight matrix $P \in \mathbb{S}_{++}^d$.

Lower bounds on $\frac{\cos^2(\hat{\theta}_i)}{\hat{\rho}_i}$

Define the trace and log-determinant potential function for any $A \in \mathbb{S}_{++}^d$ as

$$\Psi(A) := \operatorname{Tr}(A) - \log \operatorname{Det}(A) - d.$$

- The Bregman divergence between matrix A and the identity matrix I.
- \blacktriangleright $\Psi(A) > 0$ and $\Psi(A) = 0$ holds if and only if A = I.

Lemma: [Jin-Jiang-M, 2024]

For the BFGS method, we have that

(a) If
$$P = LI$$
, then $\prod_{i=0}^{k-1} \frac{\cos^2(\hat{\theta}_i)}{\hat{m}_i} \geq e^{-\Psi(\bar{B}_0)}$.

(a) If
$$P = LI$$
, then $\prod_{i=0}^{k-1} \frac{\cos^2(\hat{\theta}_i)}{\hat{m}_i} \ge e^{-\Psi(\bar{B}_0)}$.
(b) If $P = \nabla^2 f(x_*)$, then $\prod_{i=0}^{k-1} \frac{\cos^2(\hat{\theta}_i)}{\hat{m}_i} \ge e^{-\Psi(\hat{B}_0) - \sum_{i=0}^{k-1} C_i}$.

Global Linear Convergence Rates

▶ For the global linear results we use P = LI, hence $\bar{B}_k = (1/L)B_k$

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe line search. For any initial point $x_0 \in \mathbb{R}^d$ and any initial Hessian approximation $B_0 \in \mathbb{S}^d_{++}$, the following global convergence rates hold,

$$\frac{f(x_k) - f(x_*)}{f(x_0) - f(x_*)} \leq \left(1 - e^{-\frac{\Psi(\bar{B}_0)}{k}} \frac{2\alpha(1-\beta)}{\kappa}\right)^k,$$

Global Linear Convergence Rates

▶ For the global linear results we use P = LI, hence $\bar{B}_k = (1/L)B_k$

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe line search. For any initial point $x_0 \in \mathbb{R}^d$ and any initial Hessian approximation $B_0 \in \mathbb{S}^d_{++}$, the following global convergence rates hold,

$$\frac{f(x_k) - f(x_*)}{f(x_0) - f(x_*)} \leq \left(1 - e^{-\frac{\Psi(\bar{B}_0)}{k}} \frac{2\alpha(1-\beta)}{\kappa}\right)^k,$$

Special Cases:

▶
$$B_0 = LI$$
: For all $k \ge 1$
$$\frac{f(x_k) - f(x_*)}{f(x_0) - f(x_*)} \le \left(1 - \frac{2\alpha(1-\beta)}{\kappa}\right)^k.$$

▶
$$B_0 = \mu I$$
: For all $k \ge d \log \kappa$
$$\frac{f(x_k) - f(x_*)}{f(x_0) - f(x_*)} \le \left(1 - \frac{2\alpha(1-\beta)}{3\kappa}\right)^k.$$

Condition Number Independent Linear Rate

▶ Replace the bounds for $\frac{\cos^2(\hat{\theta}_i)}{\hat{m}_i}$ and \hat{q}_i by the ones obtained using $P = \nabla^2 f(x_*)$

$$\frac{f(x_k) - f(x_*)}{f(x_0) - f(x_*)} \le \left(1 - 2\alpha(1 - \beta)e^{-\frac{\Psi(\tilde{B}_0) + 3\sum_{i=0}^{k-1} c_i}{k}}\right)^k, \quad \forall k \ge 1.$$

Now by bounding $\sum_{i=0}^{k-1} C_i$ using the previous linear result, we obtain the following

Condition Number Independent Linear Rate

▶ Replace the bounds for $\frac{\cos^2(\hat{\theta}_i)}{\hat{m}_i}$ and \hat{q}_i by the ones obtained using $P = \nabla^2 f(x_*)$

$$\frac{f(x_k) - f(x_*)}{f(x_0) - f(x_*)} \le \left(1 - 2\alpha(1 - \beta)e^{-\frac{\Psi(\tilde{B}_0) + 3\sum_{i=0}^{k-1} c_i}{k}}\right)^k, \quad \forall k \ge 1.$$

Now by bounding $\sum_{i=0}^{k-1} C_i$ using the previous linear result, we obtain the following

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe LS. For any $x_0 \in \mathbb{R}^d$ and any $B_0 \in \mathbb{S}^d_{++}$, if $k \geq \Psi(\tilde{B}_0) + 3C_0\Psi(\bar{B}_0) + \frac{9}{\alpha(1-\beta)}C_0\kappa$ we have

$$\frac{f(x_k)-f(x_*)}{f(x_0)-f(x_*)} \leq \left(1-\frac{2\alpha(1-\beta)}{3}\right)^k.$$

- ▶ If we set $B_0 = LI$, the rate holds for $k \ge d\kappa + \frac{9}{\alpha(1-\beta)}C_0\kappa$,
- If we set $B_0 = \mu I$, the rate holds for $k \ge (1 + 3C_0)d \log \kappa + \frac{9}{\alpha(1-\beta)}C_0\kappa$.

Requirement for SuperLinear Rate

- ▶ To achieve a superlinear result we need tighter bounds: $\hat{p}_k \ge \alpha$ and $\hat{n}_k \ge 1 \beta$
- \blacktriangleright We show that if $\eta=1$ satisfies AW conditions, tighter bounds are achievable.

Lemma: [Jin-Jiang-M, 2024]

If $\eta_k=1$ satisfies the conditions for Armijo-Wolfe LS, then we have

$$\hat{
ho}_k \geq 1 - rac{1+C_k}{2}, \qquad \hat{n}_k \geq rac{1}{(1+C_k)}.$$

Requirement for SuperLinear Rate

- ▶ To achieve a superlinear result we need tighter bounds: $\hat{p}_k \ge \alpha$ and $\hat{n}_k \ge 1 \beta$
- \blacktriangleright We show that if $\eta=1$ satisfies AW conditions, tighter bounds are achievable.

Lemma: [Jin-Jiang-M, 2024]

If $\eta_k=1$ satisfies the conditions for Armijo-Wolfe LS, then we have

$$\hat{
ho}_k \geq 1 - rac{1+\mathcal{C}_k}{2}, \qquad \hat{n}_k \geq rac{1}{(1+\mathcal{C}_k)}.$$

Lemma: (Informal) [Jin-Jiang-M, 2024]

For $k \geq \max\left\{\Psi(\bar{B}_0), \frac{3\kappa}{\alpha(1-\beta)}\log\frac{C_0}{\delta_1}\right\}$, the number of time indices for which $\eta=1$ does not satisfy the AWLS conditions is upper bounded.

Global Superlinear Rate

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe LS. For any $x_0 \in \mathbb{R}^d$ and any $B_0 \in \mathbb{S}_{++}^d$, we have

$$\frac{f(x_k) - f(x_*)}{f(x_0) - f(x_*)} = \mathcal{O}\left(\frac{\Psi(\tilde{B}_0) + (1 + C_0)\Psi(\bar{B}_0) + (1 + C_0)\kappa}{k}\right)^k,$$

Global Superlinear Rate

Theorem: [Jin-Jiang-M, 2024]

Consider BFGS with Armijo-Wolfe LS. For any $x_0 \in \mathbb{R}^d$ and any $B_0 \in \mathbb{S}_{++}^d$, we have

$$\frac{f(x_k) - f(x_*)}{f(x_0) - f(x_*)} = \mathcal{O}\left(\frac{\Psi(\tilde{B}_0) + (1 + C_0)\Psi(\bar{B}_0) + (1 + C_0)\kappa}{k}\right)^k,$$

- ▶ If $B_0 = LI$ BFGS achieves a rate of $\mathcal{O}((\frac{d\kappa + C_0\kappa}{k})^k)$
- ▶ If $B_0 = \mu I$ BFGS achieves a rate of $\mathcal{O}((\frac{C_0 d \log \kappa + C_0 \kappa}{k})^k)$.
- ▶ Hence, the superlinear result for $B_0 = \mu I$ outperforms the rate for $B_0 = LI$ when $C_0 \log \kappa \ll \kappa$.

Numerical Experiments

▶ We focus on a hard cubic objective function, i.e.,

$$f(x) = \frac{\alpha}{12} \left(\sum_{i=1}^{d-1} g(v_i^\top x - v_{i+1}^\top x) - \beta v_1^\top x \right) + \frac{\lambda}{2} ||x||^2,$$

and $g:\mathbb{R}\to\mathbb{R}$ is defined as

$$g(w) = \begin{cases} \frac{1}{3}|w|^3 & |w| \leq \Delta, \\ \Delta w^2 - \Delta^2|w| + \frac{1}{3}\Delta^3 & |w| > \Delta, \end{cases}$$

where $\alpha, \beta, \lambda, \Delta \in \mathbb{R}$ are hyper-parameters and $\{v_i\}_{i=1}^n$ are standard orthogonal unit vectors in \mathbb{R}^d .

▶ This hard cubic function is used to establish a lower bound for second-order methods.

Numerical Experiments

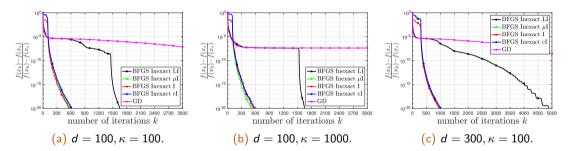


Figure: Convergence rates of BFGS with $B_0 = LI$, $B_0 = \mu I$, $B_0 = I$, $B_0 = cI$ and gradient descent to hard cubic objective function. $c = \frac{s^\top y}{\|s\|^2}$, with $s = x_2 - x_1$, $y = \nabla f(x_2) - \nabla f(x_1)$, and x_1, x_2 as two randomly generated vectors.

Numerical Experiments

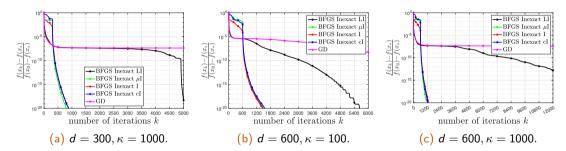


Figure: Convergence rates of BFGS with $B_0 = LI$, $B_0 = \mu I$, $B_0 = I$, $B_0 = cI$ and gradient descent to hard cubic objective function. $c = \frac{s^\top y}{\|s\|^2}$, with $s = x_2 - x_1$, $y = \nabla f(x_2) - \nabla f(x_1)$, and x_1, x_2 as two randomly generated vectors.

Discussions on the line search complexity

- ▶ We proposed a Log Bisection Algorithm for finding a stepsize
- ▶ We showed when we run BFGS for *N* iterations:
 - ⇒ then the total number of function and gradient evaluations is

$$\mathcal{O}(N \max\{\log d, \log \kappa, \log C_0\})$$

- lacksquare With more refine analysis, we can show that if $N=\Omega(\Psi(ilde{B}_0)+(\Psi(ar{B}_0)+rac{3}{lpha(1-eta)}\kappa)C_0)$
 - \Rightarrow then the total line search complexity becomes $\mathcal{O}(N)$.