

P²C²Net: Pde-Preserved Coarse Correction Network for Efficient Prediction of Spatiotemporal Dynamics

Qi Wang¹, Pu Ren², Hao Zhou¹, Xin-Yang Liu⁵, Zhiwen Deng⁴, Yi Zhang⁴, Ruizhi Chengze⁴, Hongsheng Liu⁴, Zidong Wang⁴, Jian-Xun Wang³, Ji-Rong Wen¹, Hao Sun^{1*}, Yang Liu⁵

¹ Gaoling School of Artificial Intelligence, Renmin University of China

²Department of Civil and Environmental Engineering, Northeastern University

³Department of Aerospace and Mechanical Engineering, University of Notre Dame

⁴Huawei Technologies

⁵School of Engineering Science, University of Chinese Academy of Sciences

$\ensuremath{\varnothing}$ Background&Motivation

1 The limitations of Numerical methods

• Numerical method for solving PDEs, which typically relies on fine grids, is highly timeconsuming and resource-intensive.

1 Limited capacity of Machine Learning models

 Traditional machine learning methods for solving PDEs require large training data, produce models with limited generalization ability, and often lack interpretability.

Major concerns of Encoding Physics into the Network

- Embedding physical knowledge enables the model to focus on fitting the underlying equation, accelerating convergence and reducing the dependency on large training datasets.
- This approach enhances the model's generalization capacity, allowing it to adapt to flow fields under various conditions.

\varnothing Method

\emptyset Experiments

Quantitative results

Case	Model	RMSE	MAE	MNAD	HCT (s)
Burgers	FNO	0.0980	0.0762	0.062	0.3000
	UNet	0.3316	0.2942	0.2556	0.0990
	DeepONet	0.2522	0.2106	0.1692	0.0020
	PeRCNN	0.0967	0.1828	0.1875	0.4492
	P^2C^2Net (Ours)	0.0064	0.0046	0.0037	1.4000
	Promotion ([†])	93.4%	94.0%	94.0%	211.7%
GS	FNO	NaN	NaN	NaN	354
	UNet	NaN	NaN	NaN	4
	DeepONet	0.3921	0.2670	0.2670	852
	PeRCNN	0.1586	0.0977	<u>0.0976</u>	<u>954</u>
	P^2C^2Net (Ours)	0.0135	0.0062	0.0062	2000.0
	Promotion (†)	91.5%	93.7%	93.6%	109.6%
FN	FNO	0.8935	0.5447	0.2593	3.5000
	UNet	0.1730	0.0988	<u>0.0470</u>	6.5000
	DeepONet	0.5474	0.3737	0.1779	0.5128
	PeRCNN	0.5703	0.2258	0.1075	5.3750
	P^2C^2Net (Ours)	0.0390	0.0149	0.0071	10.000
	Promotion (†)	77.5%	84.9%	84.9%	53.8%
NS	FNO	1.0100	0.7319	0.0887	2.5749
	UNet	0.8224	0.5209	0.0627	3.9627
	LI	NaN	NaN	NaN	3.5000
	PeRCNN	1.2654	0.9787	0.1192	0.6030
	P^2C^2Net (Ours)	0.3533	0.1993	0.0235	7.1969
	Promotion (\uparrow)	57.0%	61.7%	62.5%	81.6%

Generalization test

- u Our model is trained with $\mathbf{f} = \sin(4y)\mathbf{n}_x 0.1u$ and Re = 1000, where $\mathbf{n}_x = [1, 0]^T$
- u P²C²Net is able to generalize to different external forces f and Reynolds numbers *Re*.

Impact of noise on P²C²Net performance

Training	RMSE	MAE	MNAD	HCT (s)
+ 1% noise	0.0092	0.0088	0.0062	1.4
+ 0.5% noise	0.0078	0.0057	0.0047	1.4
w/o Noise noise	0.0064	0.0046	0.0037	1.4

1 Computational time for comparison

P²C²Net: Pde-Preserved Coarse Correction Network for Efficient Prediction of Spatiotemporal Dynamics

Thank You!

For further details, feel free to get in touch with us. qi_wang@ruc.edu.cn

