

Learning De-Biased Representations for Remote-Sensing Imagery

Conference on Neural Information Processing Systems 2024 (NeurIPS'24)

Background & Motivation

Challenges in RS domain • Current Solutions & Limits • Our Key Observations

What is Remote Sensing, and why research in this field is crucial.

Remote Sensing Domain

• Definition

Remote sensing images are captured from an overhead perspective by spaceborne or airborne sensors, which present unique viewpoints compared to natural images.

Multiple Spectrums

- o Optical RS (ORS): 400-700nm
- o Multi-spectral RS (MSRS): 400-2500nm
- Synthetic Aperture Radar (SAR): 1mm-1m

Key Applications

- o Environmental monitoring
- o Resource management
- Disaster response

Source: EUSI Database

Remote Sensing data are diverse and complex, requiring heavy processing costs.

Challenges in RS Data

- RS Data Diversity and Complexity
 - Various data source & processing tech
 - Various spectrums
 - Various downstream tasks

Remote Sensing data are diverse and complex, requiring heavy processing costs.

Challenges in RS Data

Learning robust and generic representations is desirable!

Why not training from scratch?

Parameter Efficient Transfer Learning

Self-supervised Training from Scratch

- Data scarcity in certain spectrums (*e.g.*, **SAR** imagery)
- o Constraints in model scale and data scale
- o Constraints in training GPU time

Figure: **Compare foundation models.** The bubble figure shows model scale, data scale and training time of five representative foundation models. Numbers near to bubbles are training GPU-hour. Models from RS domain uses less training GPU-hours compared with natural vision domain.

Why not training from scratch?

Parameter Efficient Transfer Learning

We propose to transfer existing foundation models to RS domains.

CVML Lab @ SMU SCIS, 2024-25

Why do we need parameter efficient?

Parameter Efficient Transfer Learning

Transfer Learning Setups

o Adaptation from natural vision domain to RS domain

Adaptation between RS spectrums

Zero-Shot and Fine-tuning

- Fine-tuning suffers from 1) catastrophic forgetting, 2) long training time, and 3) high VRAM usage.
- o Even zero-shot outperforms fine-tuning.

• Parameter Efficient Transfer Learning (PEFT)

- o LoRA Low Rank Adaptation
- Both fine-tuning, zero-shot and PEFT suffers from **long-tailed** distribution issue.

Figure: **Performance of Natural to ORS adaptation setting.** The debLoRA achieves highest performance, especially for tail class.

Insights & Design

Key Observations • Framework • Core Components • Algorithm Explanation

We observe that representation space learnt by PEFT methods are biased.

Key Observation – Biased Representation Space

Biased Representation Space

- When learnt on long-tailed data, LoRA's adapted feature space of LoRA is biased^[2].
- Validation samples of head class are mostly correctly classified.
- Validation samples of tail class are wrongly classified as head class.
- Key Challenge: **Train/Val distribution mismatch** for tail classes.

Figure: **Feature distribution of training samples.** For clearer visualization, we pick representative head class "Helicopter" and tail class "Ship" from DOTA v1 dataset as an example.

Our Framework involves three core components.

Framework of Our Approach

- Three key components
 - Feature clustering Unsupervised clustering to find less biased prototypes.
 - **Feature calibration** Use less-biased prototypes to calibrate tail class features.
 - **debLoRA learning** Learn a LoRA module to capture this de-bias mapping.

We first found balanced prototypes within feature space.

Feature Clustering

- Feature clustering
 - We conduct K-Means clustering over training samples' feature space.

$$\min_{\mu_k} \sum_{i=1}^N \min_{\mathbf{k}} ||z_i - \mu_k||^2, s.t. \forall k, n_k \ge \frac{N}{K \cdot \rho},$$

where μ_k and n_k denote the center and size of the k-th cluster, respectively.

Some cluster centers are contributed by both head and tail classes, and hence is less biased (*e.g.*, clusters 2 and 3).

We secondly construct less biased centers and calibrate features.

Construct De-Biased Center

• De-Biased Center

• We calculate de-biased representation center for each tail class:

$$\hat{\mu}_c = \sum_k w_k \cdot \mu_k \, , w_k = \frac{n_k}{n_c} ,$$

here weight w_k proportion to the fraction of class c samples in k-th cluster.

 $\circ~$ This ensures that the de-biased center $\hat{\mu}_c$ is not dominated by head classes

We utilize LoRA to capture the de-bias mapping.

Feature Calibration

Tail Class Calibration

- o De-Biased Center are closer to validation samples.
- We calibrate tail class features z by moving them close to de-biased center $\hat{\mu}$:

$$\tilde{z} = \alpha z + (1 - \alpha)\hat{\mu},$$

where $\alpha = \min(1, \frac{10}{ir})$ empirically.

- Learning debLoRA
 - We learn an LoRA module with training objective $\min_{\phi} \frac{1}{D_t} \sum_{x \in D_t} \left\| g_{\phi}(f_{\theta}(x)) - \tilde{z} \right\|^2$

