

Learning De-Biased Representations for Remote-Sensing Imagery

Conference on Neural Information Processing Systems 2024 (NeurIPS'24)

Background & Motivation

Challenges in RS domain • Current Solutions & Limits • Our Key Observations

What is Remote Sensing, and why research in this field is crucial.

Remote Sensing Domain

• **Definition**

Remote sensing images are captured from an overhead perspective by spaceborne or airborne sensors, which present unique viewpoints compared to natural images.

• **Multiple Spectrums**

- o Optical RS (ORS): 400-700nm
- o Multi-spectral RS (MSRS): 400-2500nm
- o Synthetic Aperture Radar (SAR): 1mm-1m

• **Key Applications**

- o Environmental monitoring
- o Resource management
- o Disaster response

Source: EUSI Database

Remote Sensing data are diverse and complex, requiring heavy processing costs.

Challenges in RS Data

- **RS Data Diversity and Complexity**
	- o Various data **source & processing tech**
	- o Various **spectrums**
	- o Various downstream **tasks**

CVML Lab @ SMU SCIS, 2024-25

Remote Sensing data are diverse and complex, requiring heavy processing costs.

Challenges in RS Data

Learning **robust and generic representations** is desirable!

CVML Lab @ SMU SCIS, 2024-25

Why not training from scratch?

Parameter Efficient **Transfer Learning**

• **Self-supervised Training from Scratch**

- o Data scarcity in certain spectrums (*e.g.*, **SAR** imagery)
- o Constraints in **model scale** and **data scale**
- o Constraints in **training GPU time**

Figure: **Compare foundation models.** The bubble figure shows model scale, data scale and training time of five representative foundation models. Numbers near to bubbles are training GPU-hour. Models from RS domain uses less training GPU-hours compared with natural vision domain.

Why not training from scratch?

Parameter Efficient **Transfer Learning**

We propose to **transfer existing foundation models to RS domains.**

Why do we need parameter efficient?

Parameter Efficient Transfer Learning

• **Transfer Learning Setups**

o Adaptation **from natural vision domain to RS domain**

o Adaptation **between RS spectrums**

• **Zero-Shot and Fine-tuning**

- \circ Fine-tuning suffers from 1) catastrophic forgetting, 2) long training time, and 3) high VRAM usage.
- o Even zero-shot outperforms fine-tuning.

• **Parameter Efficient Transfer Learning (PEFT)**

- o **LoRA - Lo**w **R**ank **A**daptation
- o Both fine-tuning, zero-shot and PEFT suffers from **long-tailed** distribution issue.

Figure: **Performance of Natural to ORS adaptation setting.** The debLoRA achieves highest performance, especially for tail class.

Insights & Design

Key Observations • Framework • Core Components • Algorithm Explanation

We observe that representation space learnt by PEFT methods are biased.

Key Observation – Biased Representation Space

• **Biased Representation Space**

- o When learnt on long-tailed data, LoRA's adapted **feature space** of LoRA **is biased[2]** .
- o Validation samples of **head class** are mostly **correctly** classified.
- o Validation samples of **tail class** are **wrongly** classified as head class.
- o Key Challenge: **Train/Val distribution mismatch** for tail classes.

Figure: **Feature distribution of training samples.** For clearer visualization, we pick representative head class "Helicopter" and tail class "Ship" from DOTA v1 dataset as an example.

Our Framework involves three core components.

Framework of Our Approach

- **Three key components**
	- o **Feature clustering** Unsupervised clustering to find less biased prototypes.
	- o **Feature calibration** Use less-biased prototypes to calibrate tail class features.
	- o **debLoRA learning** Learn a LoRA module to capture this de-bias mapping.

We first found balanced prototypes within feature space.

Feature Clustering

- **Feature clustering**
	- o We conduct K-Means clustering over training samples' feature space.

$$
\min_{\mu_k} \sum_{i=1}^N \min_{\mathbf{k}} \|z_i - \mu_k\|^2, \text{s.t. } \forall k, n_k \ge \frac{N}{K \cdot \rho},
$$

where μ_k and n_k denote the center and size of the k-th cluster, respectively.

o Some cluster centers are contributed by both head and tail classes, and hence is less biased (*e.g.*, clusters 2 and 3).

We secondly construct less biased centers and calibrate features.

Construct De-Biased Center

• **De-Biased Center**

o We calculate de-biased representation center for each tail class:

$$
\hat{\mu}_c = \sum_k w_k \cdot \mu_k \, , w_k = \frac{n_k}{n_c} \, ,
$$

here weight w_k proportion to the fraction of class c samples in k -th cluster.

 \circ This ensures that the de-biased center $\hat{\mu}_c$ is not dominated by head classes

We utilize LoRA to capture the de-bias mapping.

Feature Calibration

• **Tail Class Calibration**

- o De-Biased Center are **closer to validation** samples.
- \circ We calibrate tail class features *z* by moving them close to de-biased center $\hat{\mu}$:

$$
\tilde{z} = \alpha z + (1 - \alpha)\hat{\mu},
$$

where $\alpha = \min(1, \frac{10}{ir})$ empirically.

- **Learning debLoRA**
	- o We learn an LoRA module with training objective min φ 1 D_t \sum $x \in D_t$ $g_{\boldsymbol{\phi}}(f_{\theta}(x)) - \tilde{z}$ \tilde{z}

