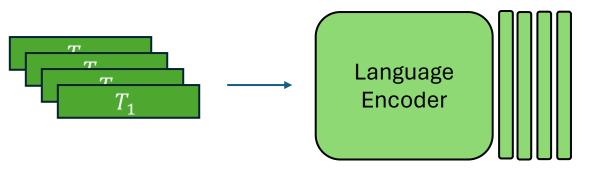
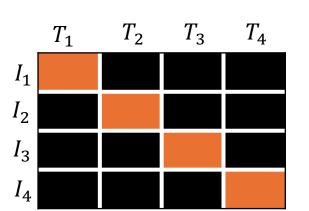


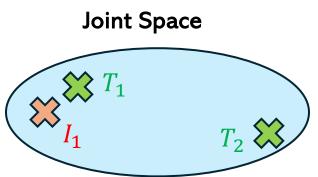
Interpreting and Analysing CLIP's Zero-Shot Image Classification via Mutual Knowledge

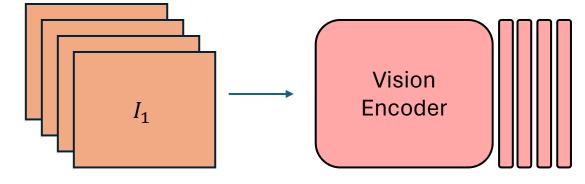
Fawaz Sammani, Nikos Deligiannis

CLIP Contrastive Language Image Pretraining



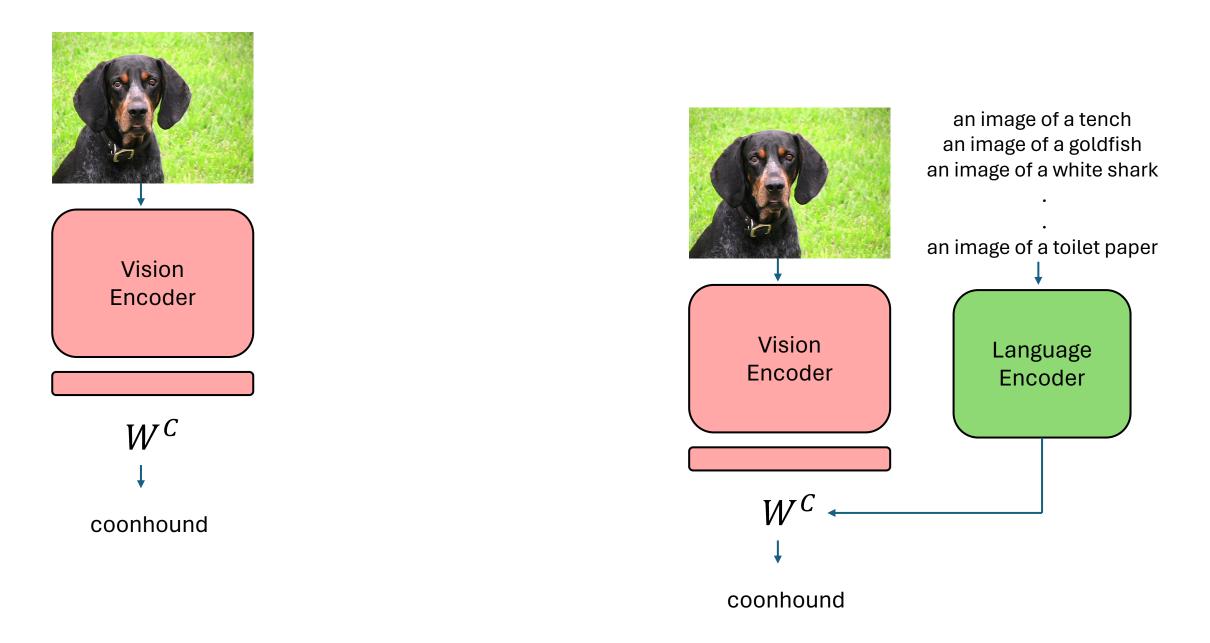


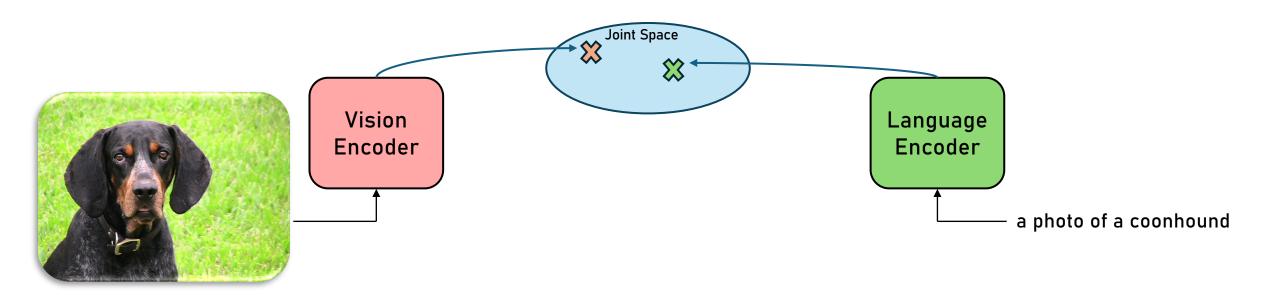




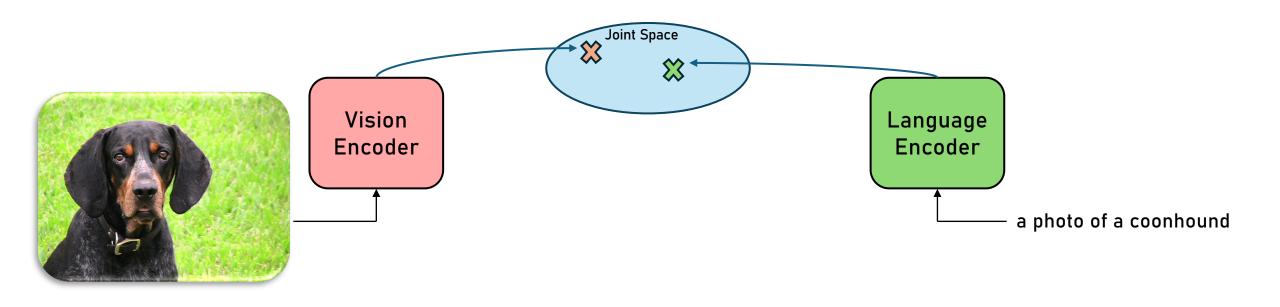
Normal Classification

CLIP Zero-Shot Classification

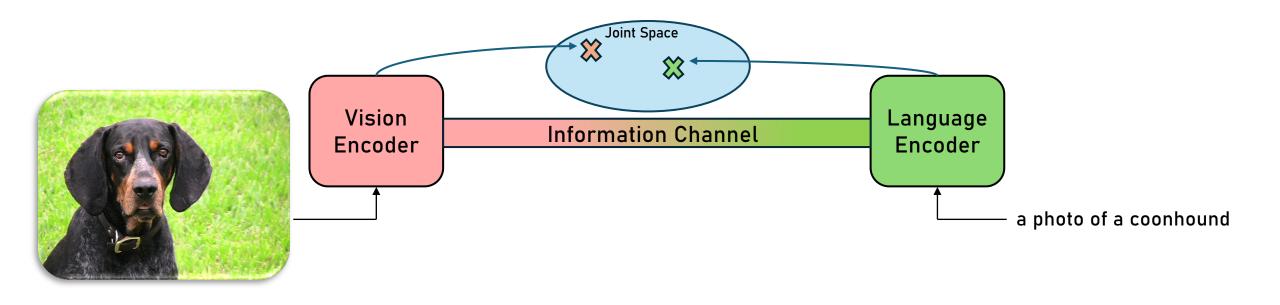




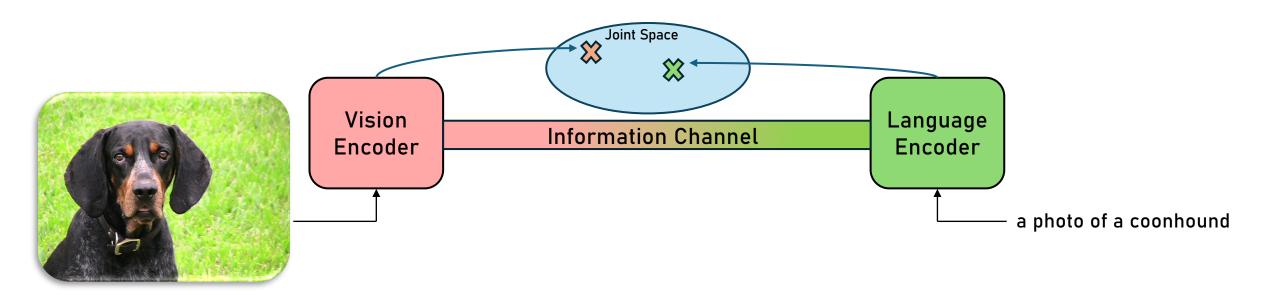
What do the vision and language encoders of CLIP learn in common, causing imagetext points to be closer or further apart in the joint space?



What do the vision and language encoders of CLIP learn in common, causing imagetext points to be closer or further apart in the joint space?



vision-language information channel



How to enable this?

The vision and language interpretations must be in the same space

How to do this efficiently?

Discrete Units (simple MI calculation in discrete space, correctly models "bits" of the channel)

How to make it understandable?

Human-Friendly interpretations

Textual Concepts

Descriptors; short descriptions in natural language Covers many objects in the world

a long snout

feathered ears

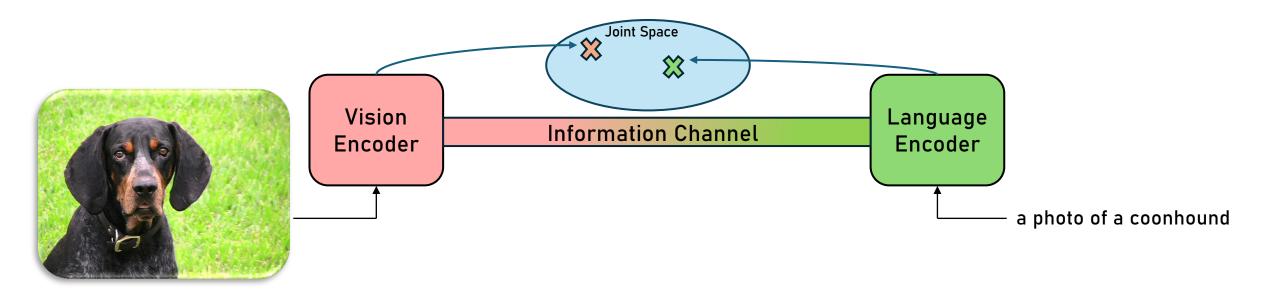
sharp teeth

pointy snout

•

•

.



How to enable this?

The vision and language interpretations must be in the same space

How to do this efficiently?

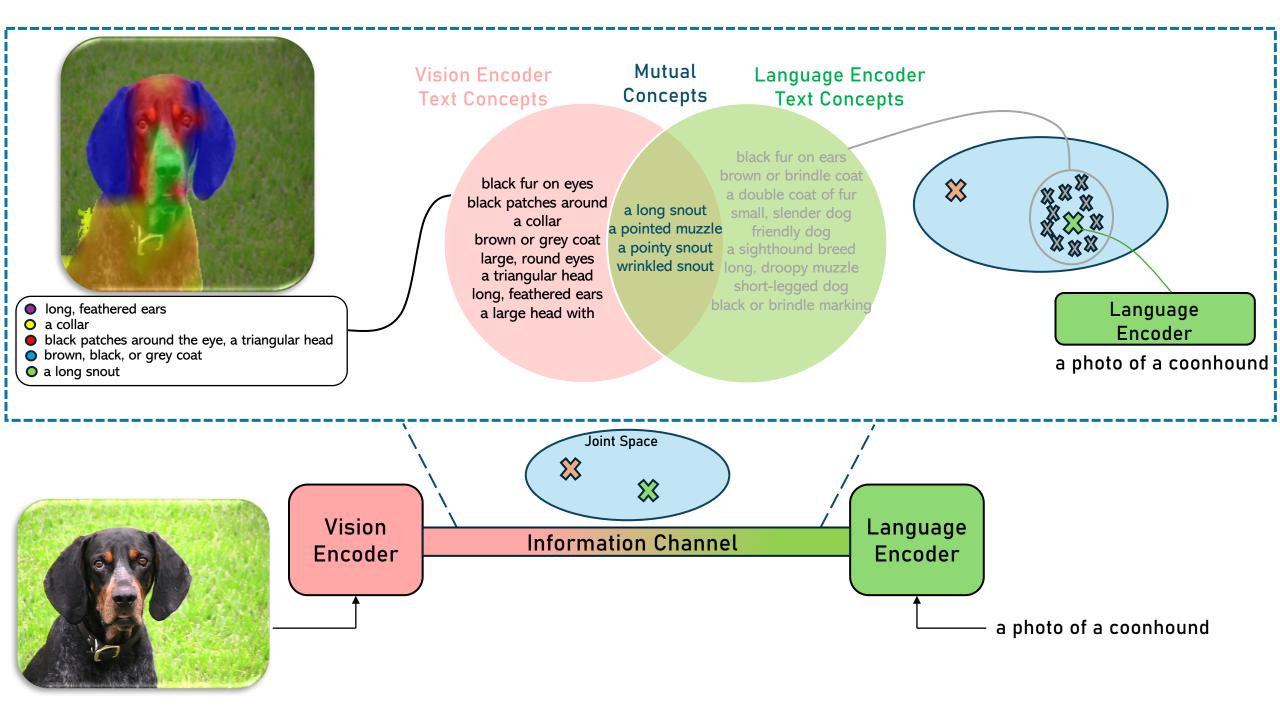
Discrete Units (simple MI calculation in discrete space, correctly models "bits" of the channel)

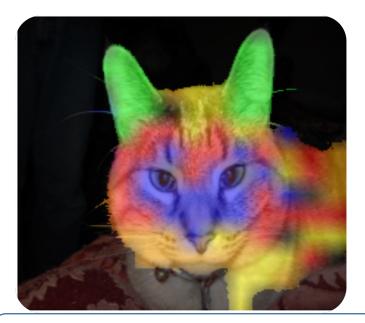
How to make it easily understandable?

Human-Friendly interpretations

Space of Textual Concepts

```
a long snout \rightarrow 0
feathered ears \rightarrow 1
```





- large eyes
 pointed ears; long, feathered ears
 a long, snout-like nose; long whiskers
 a thick, double coat of fur that is black and silver
 a black head with a white stripe behind the eye

- often has spots or stripes
- a small head with a red and yellow bill
- birds or other animals nesting on the cliff

- blue plumage; long, narrow tail
- a black back and wings; a long, thin strip of feathers
- long, red bill; a red beak

Evaluating Multimodal Concepts

Baseline 1: Multimodal Concept Bottleneck Models

Baseline 2: Neuron Annotation

Table 1: Evaluation scores of our multimodal explanations compared to the baselines established. All use the same features, model and textual concept bank for fair comparison.

Explanation	Requires Training	Delet.↓	Insert.↑	AccDrop↓	AccInc ↑
MM-CBM	Yes	3.147	3.385	2.634	1.013
MM-ProtoSim	Yes	3.149	3.358	2.665	0.943
Feature Maps	Yes	2.921	3.114	2.283	1.233
Ours (PCA)	No	2.460	3.168	1.582	1.849
Ours (K-means)	No	2.422	3.122	1.555	1.781

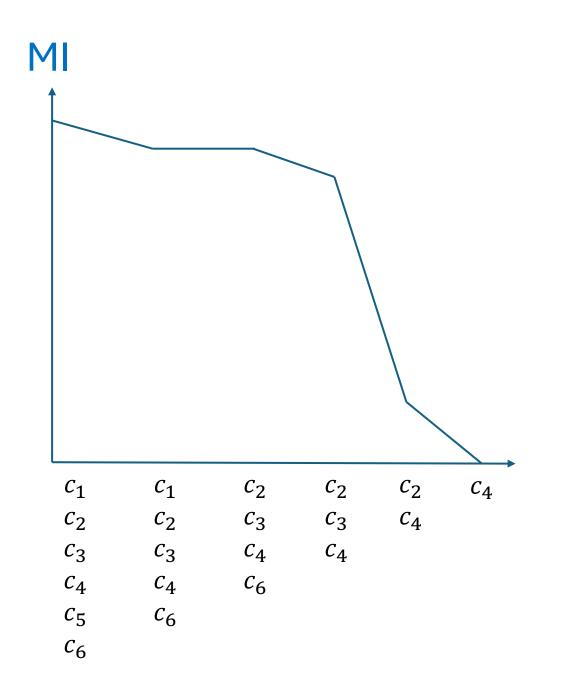
Evaluation with CLIP Classification via Descriptions

Table 2: Effectiveness and Relevancy of our multimodal concepts in boosting zero-shot accuracy of both ResNet and ViT CLIP models on the ImageNet validation set compared to baselines [36, 43].

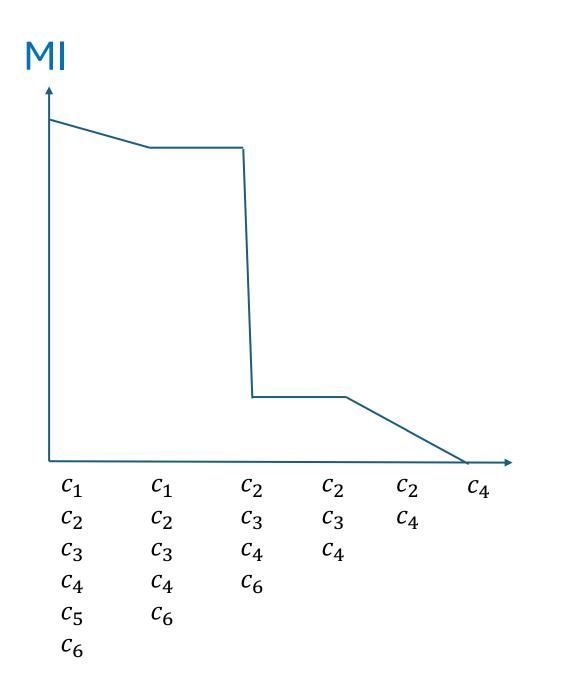
ResNets	Base	Ours	Δ	ViTs	Base	Ours	Δ
RN50	59.54	61.85	+2.31	ViT-B/16	67.93	70.28	+2.35
RN50x4	64.36	67.93	+3.57	ViT-B/32	63.28	65.58	+2.30
RN50x16	68.47	72.22	+3.75	ViT-L/14	74.69	76.74	+2.05
RN101	60.68	64.14	+3.46	ViT-L/14@336px	75.49	77.64	+2.15

Concepts are entangled. It only makes sense to consider them as a whole, or in relation to each other.

We define that two sources have a strong shared knowledge when a source retains knowledge about the other, despite removing important information units from it.



A higher AUC indicates gradual or late drops of MI in the curve, and thus stronger shared knowledge

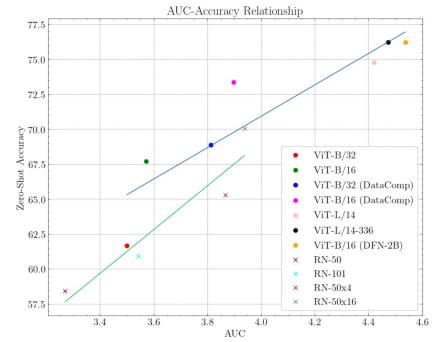


A lower AUC indicates sharp or early drops of MI, and thus weaker shared knowledge

Model Family	Model	Data Size	Top-1 (%)	MI		AUC	
				PCA	K-means	PCA	K-means
ViTs	ViT-B/32	400M	61.66	7.40	7.26	3.61	3.39
	ViT-B/16	400M	67.70	7.50	7.44	3.62	3.53
	ViT-B/32-dcp	1B	68.88	7.79	7.65	3.93	3.70
	ViT-B/16-dcp	1B	73.37	7.68	7.58	3.99	3.81
	ViT-L/14	400M	74.77	7.94	7.89	4.47	4.37
	ViT-L/14↑	400M	76.23	7.96	7.93	4.51	4.44
	ViT-B/16-dfn	2B	76.24	8.19	8.11	4.62	4.46
ResNets	RN-50	400M	58.42	7.14	7.20	3.23	3.32
	RN-101	400M	60.90	7.43	7.53	3.49	3.60
	RN-50×4	400M	65.28	7.53	7.58	3.84	3.90
	RN-50×16	400M	70.04	7.51	7.63	3.85	4.03
ConvNeXTs	CNeXt-B1	400M	65.36	6.47	6.66	2.54	2.80
	CNeXt-B2	13B	71.22	7.16	7.56	3.19	3.74

Table 3: MI and AUC scores for different model families using PCA and K-means evaluated on the full ImageNet validation split, along with the pretraining data and Top-1 accuracy.

Mutual Knowledge is also an evaluation of the Mutual Concepts, by assuming correlation with accuracy



Code available:

https://github.com/fawazsammani/clip-interpret-mutual-knowledge