
BLAST: Block-Level Adaptive
Structured Matrices for Efficient Deep

Neural Network Inference
Changwoo Lee, Soo Min Kwon, Qing Qu, Hun-Seok Kim

Department of Electrical Engineering and Computer Science
University of Michigan



Structured Matrix for Efficient DNN Inference
Modern DNNs (e.g., Transformers) are highly overparameterized, making them inefficient
or even impossible to run on the edge devices.

• Fortunately, the weight matrices in large DNNs can exhibit hidden low-dimensional
structures, which are often approximated by low-rankness or sparsity.

• Identifying and leveraging these underlying structures can significantly enhance the
efficiency of a DNN without compromising accuracy.

How can we uncover various low-dimensional structures in the weight matrices for
accelerated inference?

x W1 φ · · · W` φ

Dense Weight Matrix, # params= n2

≈
Structured Matrix, # params � n2

· · · WL y
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BLAST: Block-Level Adaptive STructured Matrix
• Flexible Design: Encapsulates different structures such as low-rank, block low-rank,

block-diagonal matrices, and their combinations.
• Data-Driven Structure: Identifies structures from data through gradient descent.
• Factorization Algorithm: Decomposes a dense matrix into the BLAST matrix via

preconditioned gradient descent.

Simple integration into the deep learning pipelines:
1. Replace dense weights of a DNN with the BLAST matrices.
2. Initialize the BLAST factors randomly or through the

factorization algorithm.
3. Update the BLAST factors using the training data through

SGD.
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Construction of BLAST Matrix
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1. Partition an n × n matrix into equal-sized b2 number
of blocks.

2. Each block has SVD-like factors Ai,j = UiSi,jV T
j .

Ui ,Vj : Shared Bases
• Blocks at the ith row (jth column) share Ui (Vj).

Si,j : Diagonal Scaling Factor
• Each block has its own Si,j ∈ diag(Rr ).

Adaptive Structure by Diagonal Factors
• Low Rank: Si,j = I, ∀i , j = 1, . . . , b.
• Block Diagonal: Si,j = I if i = j, O otherwise.
• Monarch (Block Low-Rank): See Paper.

Complexity for Matmul: 2nr + rb2 < n2 multiplications.
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Evaluations on Mid-Size Models
ViT-Base and GPT-2 with BLAST weight matrices trained from scratch:

Up to 73% reduction in FLOPs with higher accuracy.

Model Accuracy (%) Relative FLOPs (%)
Dense ViT-Base 78.7 100
Low-Rank 78.9 33.5
Monarch 78.9 33.5
Gaudi-GBLR 78.5 32.8
BLAST3 79.3 27.8

Table: ImageNet validation accuracy and relative
FLOPs of ViT-Base trained from scratch models
with different structured weight matrices. BLAST3

indicates the BLAST matrix with 3× 3 number of
blocks.
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Figure: WikiText 103 test perplexity-FLOPs trade-off
curves from GPT-2.
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Evaluations on Foundation Model Compression
Compress DiT-XL and Llama-7B with BLAST by 50%, followed by re-training.

Minimal accuracy degradation; Up to 35% speedup on language generation on an
NVIDIA A100 (40GB) GPU.
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Figure: Examples of generated images using DiT-XL
compressed by 50% through BLAST or low-rank
matrices.

CR Method # Params WikiText-2 Perplexity (↓) 0-Shot Acc. (%) (↑)
0% Original Llama-7B 6.74B 9.37 66.07

50%

Low-Rank 3.51B 26.33 (-16.96) 48.40 (-17.67)
Monarch 3.50B 7.53e5 (-7.53e5) 35.03 (-31.04)
Block-Diagonal 3.50B 5.21e6 (-5.21e6) 34.86 (-31.21)
BLAST16 3.56B 14.21 (-4.84) 56.22 (-9.84)

CR b L = 10 L = 100 L = 1000

0% N/A 0.41 ±8e-5 3.82 ±9e-4 41.23 ±6e-3
20% 2 0.35 ±9e-5 3.30 ±2e-3 35.99 ±4e-3
20% 16 0.36 ±8e-5 3.36 ±2e-3 36.48 ±7e-3
50% 16 0.31 ±4e-4 2.86 ±1e-2 30.35 ±2e-2

Table: Top: Zero-shot performance of LLaMA-7B
after compression and retraining. Bottom: Average
runtime (in second) of Llama-7B with BLAST.
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