

Task-oriented Time Series Imputation Evaluation via Generalized Representers

Zhixian Wang^{1,2}, Linxiao Yang², Sun Liang², Qingsong Wen², Yi Wang^{1*}

¹ The University of Hong Kong ² DAMO Academy, Alibaba Group

Zhixian Wang

Qingsong Wen

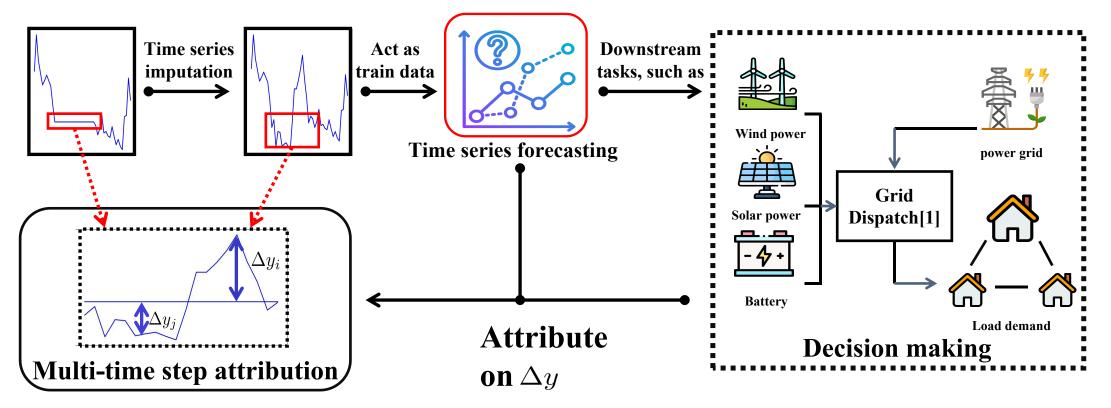
Yi Wang

1

Introduction

Time series imputation task can act as a prerequisite for other time series-related tasks.

□ In time series forecasting task, time series data serves as both input data and training labels, which places high demands on time series imputation.



[1] Di Piazza A, Di Piazza M C, La Tona G, et al. An artificial neural network-based forecasting model of energy-related time series for electrical grid management[J]. Mathematics and Computers in Simulation, 2021, 184: 294-305.

Introduction

2.5

2.0

1.5

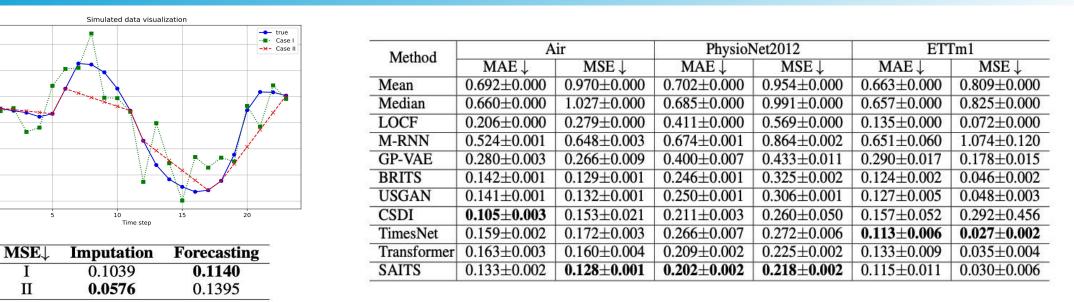
1.0

0.5

0.0

-0.5

Value



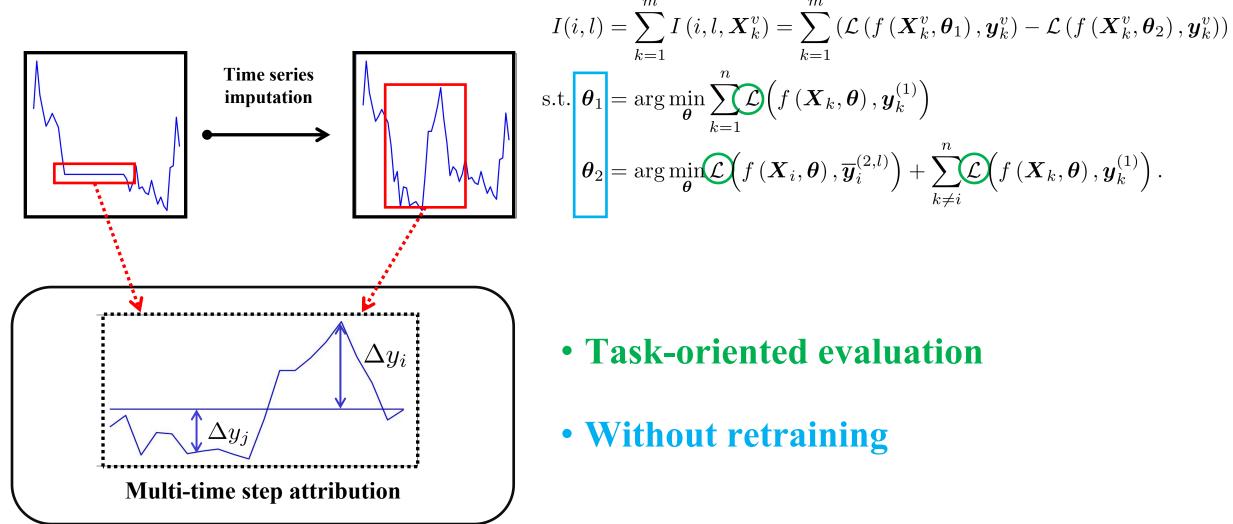
Toy example

Table 3 in [1]

□ The accuracy of time series imputation may not necessarily reflect the accuracy of its application in downstream forecasting tasks.

□ There is currently no universal time imputation method that can outperform other methods on all datasets and evaluation metrics.

D Problem Statement



□ First-order approximation

$$\begin{split} I(i,l) &\approx \sum_{k=1}^{m} \frac{\partial \mathcal{L}\left(f\left(\boldsymbol{X}_{k}^{v}, \boldsymbol{\theta}\right), \boldsymbol{y}_{k}^{v}\right)}{\partial y_{i,l}} \bigg|_{y_{i,l} = y_{i,l}^{(1)}} \left(y_{i,l}^{(1)} - y_{i,l}^{(2)}\right) \\ &= \sum_{k=1}^{m} \frac{\partial \mathcal{L}\left(f\left(\boldsymbol{X}_{k}^{v}, \boldsymbol{\theta}\right), \boldsymbol{y}_{k}^{v}\right)^{T}}{\partial f\left(\boldsymbol{X}_{k}^{v}, \boldsymbol{\theta}\right)} \frac{\partial f\left(\boldsymbol{X}_{k}^{v}, \boldsymbol{\theta}\right)}{\partial y_{i,l}} \bigg|_{y_{i,l} = y_{i,l}^{(1)}} \left(y_{i,l}^{(1)} - y_{i,l}^{(2)}\right). \\ \Box \text{ Kernel-machine approximation} \\ \hat{\alpha} &= \operatorname*{argmin}_{\boldsymbol{\alpha} \in \mathbb{R}^{n} \times \mathbb{R}^{L_{2}} \times \mathbb{R}^{L_{2}}} \left\{ \sum_{i=1}^{n} \sum_{l=1}^{L_{2}} \sum_{j=1}^{n} \mathcal{L}\left(\boldsymbol{\alpha}_{i,l}^{T} K\left(\boldsymbol{X}_{i}, \boldsymbol{X}_{j}\right), \frac{\partial f\left(\boldsymbol{X}_{j}, \boldsymbol{\theta}\right)}{\partial y_{i,l}}\right) \right\}. \end{split}$$

Intuition

Remark 1. Given two infinitely differentiable functions $f(\mathbf{x})$ and $g(\mathbf{x})$ in a bounded domain $D \in \mathbb{R}^n$, $||f(\mathbf{x}) - g(\mathbf{x})||$ is always less than ϵ . For any given δ and ϵ_2 , there exists an ϵ such that, in the domain D, the measure of the region I that satisfying $||\frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} - \frac{\partial g(\mathbf{x})}{\partial \mathbf{x}}|| > \delta$ is not greater than ϵ_2 , *i.e.*, $m(I) \leq \epsilon_2$.

Discussion

Use
$$g(X_{\text{test}}, y_{i,l})$$
 to approximate $f(X_{\text{test}}, \theta_T, y_{i,l})$ \bigvee Use $\frac{\partial g(X_{\text{test}}, y_{i,l})}{\partial y_{i,l}}$ to approximate $\frac{\partial f(X_{\text{test}}, \theta_T, y_{i,l})}{\partial y_{i,l}}$
 $\int \frac{\partial f(X_{\text{test}}, \theta_T, y_{i,l})}{\partial y_{i,l}} = \frac{\partial f(X_{\text{test}}, \theta_T, y_{i,l})}{\partial \theta_T} \frac{\partial \theta_T}{\partial y_{i,l}}$

6

Discussion

$$\frac{\partial f\left(X_{\text{test}}, \theta_T, y_{i,l}\right)}{\partial y_{i,l}} = \frac{\partial f\left(X_{\text{test}}, \theta_T, y_{i,l}\right)}{\partial \theta_T} \frac{\partial \theta_T}{\partial y_{i,l}} \quad (\text{Let} \frac{\partial \mathcal{L}\left(f\left(X, \theta_t, y_{i,l}\right), y\right)}{\partial \theta_t} \text{ be } h_t\left(y_{i,l}\right), \text{ and } \frac{\partial^2 h_t\left(y_{i,l}\right)}{\partial y_{i,l}^2} = 0)$$
For SGD
$$\theta_T = \theta_0 - \sum_{t=1}^T \eta h_t\left(y_{i,l}\right) \quad \Box \quad \frac{\partial^2 \theta_T}{\partial y_{i,l}^2} = 0$$
For Adam

 $rac{\partial heta_T}{\partial y_{i,l}}$

will be an algebraic function with only a finite number of monotonic intervals. l

Given State Final Approximation Problem

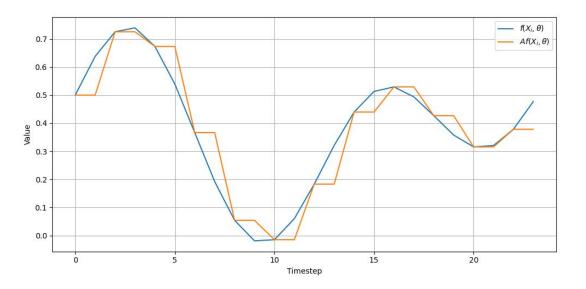
$$\hat{\boldsymbol{\alpha}'} = \operatorname*{argmin}_{\boldsymbol{\alpha'} \in \mathbb{R}^n \times \mathbb{R}^{L_2}} \left\{ \sum_{i=1}^n \mathcal{L}\left(\sum_{j=1}^n \boldsymbol{\alpha'_j}^T K\left(\boldsymbol{X}_i, \boldsymbol{X}_j\right), f\left(\boldsymbol{X}_i, \boldsymbol{\theta}\right) \right) \right\},\$$
$$\hat{\boldsymbol{\alpha}_{i,l}} = \frac{\partial \hat{\boldsymbol{\alpha}'_i}}{\partial y_{i,l}}$$

Approximation Result

$$\sum_{k=1}^{m} -\frac{1}{n} \frac{\partial \mathcal{L}\left(f\left(\boldsymbol{X}_{k}^{v}, \boldsymbol{\theta}\right), \boldsymbol{y}_{k}^{v}\right)}{\partial f\left(\boldsymbol{X}_{k}^{v}, \boldsymbol{\theta}\right)} \underbrace{\frac{\partial^{2} \mathcal{L}\left(f\left(\boldsymbol{X}_{i}, \boldsymbol{\theta}\right), \boldsymbol{y}_{i}\right)^{T}}{\partial f\left(\boldsymbol{X}_{i}, \boldsymbol{\theta}_{t}\right) \partial y_{i,l}}}_{\boldsymbol{a}_{\hat{i},l}} \underbrace{\frac{\partial f\left(\boldsymbol{X}_{i}, \boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}} \underbrace{\frac{\partial f\left(\boldsymbol{X}_{k}^{v}, \boldsymbol{\theta}\right)^{T}}{\partial \boldsymbol{\theta}}}_{\text{NTKkernel}}.$$

□ Accleration method

$$\frac{\partial f\left(\boldsymbol{X}_{i},\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}} \approx \boldsymbol{A}^{\dagger} \frac{\partial \boldsymbol{A} f\left(\boldsymbol{X}_{i},\boldsymbol{\theta}\right)}{\partial \boldsymbol{\theta}}.$$



Experiment

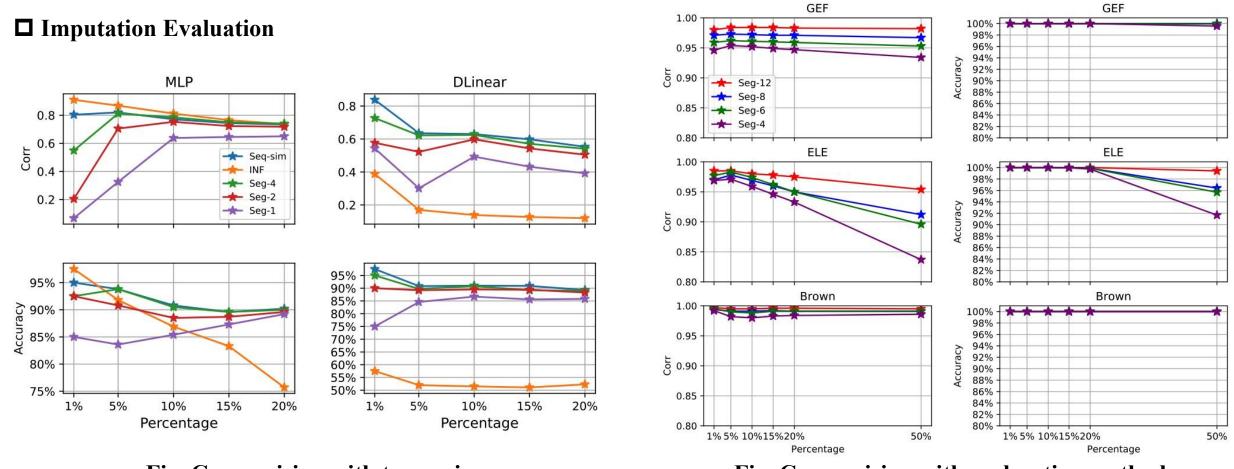


Fig. Comparision with true gain

Fig. Comparision with accleration method

Corr: The correlation between estimated gains and retraining gains.

>Accuracy: Accuracy of sign estimation for retraining gains.

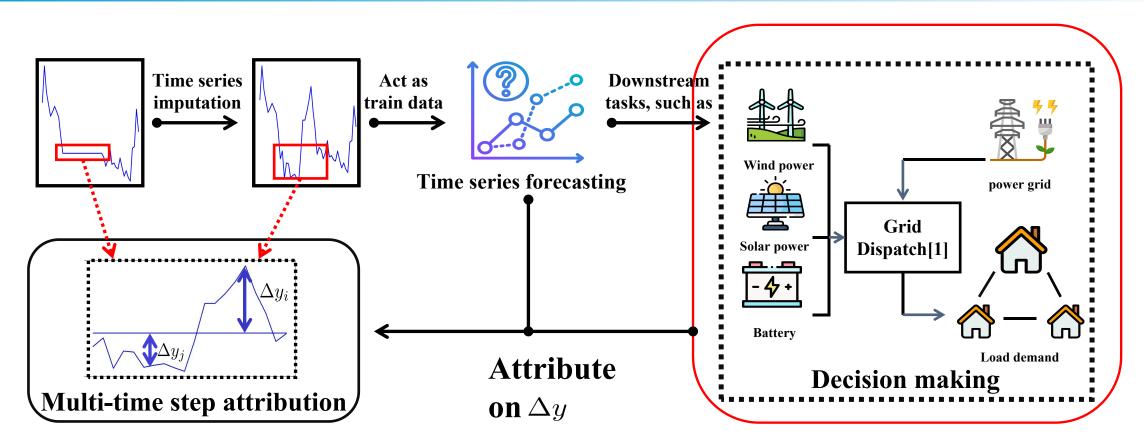
Experiment

■ MSE↓in the downstream forecasting task

	2													
Method	Datasets						Method	Datasets						
	GEF	ETTH1	ETTH2	ELECTRICITY	TRAFFIC	AIR		GEF	ETTH1	ETTH2	ELECTRICITY	TRAFFIC	AIR	
I.Original								I.Original						
Mean	0.1750	0.0523	0.1797	0.1123	0.4359	0.1508	Mean	0.1750	0.0523	0.1797	0.1123	0.4359	0.1508	
SAITS	0.1980(0.0092)	0.1027(0.0021)	0.2098(0.0125)	0.1176(0.0110)	0.4311(0.0151)	0.5006(0.0251)	SAITS	0.1980(0.0092)	0.1027(0.0021)	0.2098(0.0125)	0.1176(0.0110)	0.4311(0.0151)	0.5006(0.0251)	
BRITS	0.2021(0.0007)	0.1692(0.0105)	0.2384(0.0018)	0.1503(0.0003)	0.4535(0.0001)	0.6979(0.0086)	BRITS	0.2021(0.0007)	0.1692(0.0105)	0.2384(0.0018)	0.1503(0.0003)	0.4535(0.0001)	0.6979(0.0086)	
MRNN	0.2052(0.0001)	0.2184(0.0016)	0.2317(0.0001)	-	0.4540(0.0000)	0.7965(0.0018)	MRNN	0.2052(0.0001)	0.2184(0.0016)	0.2317(0.0001)	-	0.4540(0.0000)	0.7965(0.0018)	
GPVAE	0.2087(0.0019)	0.1591(0.0072)	0.2365(0.0022)	0.1471(0.0001)	0.4465(0.0001)	0.6968(0.0044)	GPVAE	0.2087(0.0019)	0.1591(0.0072)	0.2365(0.0022)	0.1471(0.0001)	0.4465(0.0001)	0.6968(0.0044)	
USGAN	0.2048(0.0023)	0.1549(0.0179)	0.2238(0.0085)	0.1447(0.0011)	0.4742(0.0048)	0.6840(0.0306)	USGAN	0.2048(0.0023)	0.1549(0.0179)	0.2238(0.0085)	0.1447(0.0011)	0.4742(0.0048)	0.6840(0.0306)	
SPIN	0.2120(0.0029)	0.2000(0.0509)	0.2414(0.0327)	0.1588(0.0113)	0.4609(0.0148)	0.6604(0.0802)	SPIN	0.2120(0.0029)	0.2000(0.0509)	0.2414(0.0327)	0.1588(0.0113)	0.4609(0.0148)	0.6604(0.0802)	
ImputeFormer	0.1820(0.0016)	0.1558(0.0033)	0.2125(0.0022)	0.1076(0.0012)	0.4249(0.0060)	0.6300(0.0119)	ImputeFormer	0.1820(0.0016)	0.1558(0.0033)	0.2125(0.0022)	0.1076(0.0012)	0.4249(0.0060)	0.6300(0.0119)	
II. With Gain estimation								II. With Seg-4 Gain estimation						
Mean+SAITS	0.1653(0.0008)	0.0522(0.0000)	0.1797(0.0000)	0.0957(0.0006)	0.4147(0.0023)	0.1491(0.0001)	Mean+SAITS	0.1666(0.0007)	0.0522(0.0000)	0.1796(0.0000)	0.0972(0.0006)	0.4182(0.0022)	0.1490(0.0001)	
Mean+BRITS	0.1694(0.0000)	0.0522(0.0000)	0.1795(0.0000)	0.1068(0.0000)	0.4318(0.0000)	0.1507(0.0000)	Mean+BRITS	0.1704(0.0000)	0.0522(0.0000)	0.1795(0.0000)	0.1078(0.0000)	0.4332(0.0000)	0.1507(0.0000)	
Mean+MRNN	0.1696(0.0000)	0.0523(0.0000)	0.1794(0.0000)	-	0.4319(0.0000)	0.1508(0.0000)	Mean+MRNN	0.1707(0.0000)	0.0523(0.0000)	0.1795(0.0000)	-	0.4333(0.0000)	0.1508(0.0000)	
Mean+GPVAE	0.1696(0.0000)	0.0522(0.0000)	0.1795(0.0000)	0.1058(0.0001)	0.4290(0.0005)	0.1507(0.0000)	Mean+GPVAE	0.1708(0.0000)	0.0522(0.0000)	0.1795(0.0000)	0.1069(0.0001)	0.4308(0.0004)	0.1507(0.0000)	
Mean+USGAN	0.1698(0.0001)	0.0522(0.0000)	0.1795(0.0000)	0.1069(0.0003)	0.4215(0.0004)	0.1506(0.0000)	Mean+USGAN	0.1704(0.0001)	0.0522(0.0000)	0.1795(0.0000)	0.1076(0.0002)	0.4251(0.0002)	0.1506(0.0000)	
Mean+SPIN	0.1679(0.0016)	0.0523(0.0001)	0.1784(0.0000)	0.1038(0.0007)	0.4276(0.0013)	0.1502(0.0005)	Mean+SPIN	0.1693(0.0013)	0.0523(0.0001)	0.1800(0.0003)	0.1047(0.0001)	0.4302(0.0010)	0.1502(0.0005)	
Mean+ImputeFormer	0.1657(0.0003)	0.0522(0.0000)	0.1795(0.0000)	0.0977(0.0002)	0.4178(0.0015)	0.1498(0.0000)	Mean+ImputeFormer	0.1666(0.0002)	0.0522(0.0000)	0.1794(0.0000)	0.0991(0.0002)	0.4203(0.0014)	0.1498(0.0000)	
III. With Influence Function								III. With Seg-2 Gain estimation						
SATIS+INF	0.1953(0.0008)	0.1026(0.0021)	0.2074(0.0115)	0.1170(0.0169)	0.4294(0.0153)	0.5207(0.0213)	Mean+SAITS	0.1686(0.0005)	0.0522(0.0000)	0.1799(0.0001)	0.1003(0.0005)	0.4212(0.0017)	0.1491(0.0001)	
BRITS+INF	0.1952(0.0009)	0.1637(0.0091)	0.2326(0.0005)	0.1302(0.0022)	0.4419(0.0008)	0.7110(0.0069)	Mean+BRITS	0.1724(0.0000)	0.0522(0.0000)	0.1795(0.0000)	0.1105(0.0000)	0.4355(0.0000)	0.1507(0.0000)	
MRNN+INF	0.1972(0.0002)	0.1905(0.0017)	0.2251(0.0003)	-	0.4431(0.0002)	0.7758(0.0020)	Mean+MRNN	0.1730(0.0000)	0.0523(0.0000)	0.1795(0.0000)	-	0.4356(0.0000)	0.1508(0.0000)	
GPVAE+INF	0.2013(0.0018)	0.1543(0.0073)	0.2314(0.0031)	0.1275(0.0027)	0.4347(0.0005)	0.7096(0.0021)	Mean+GPVAE	0.1730(0.0000)	0.0522(0.0000)	0.1795(0.0000)	0.1097(0.0001)	0.4335(0.0003)	0.1507(0.0000)	
USGAN+INF	0.1984(0.0024)	0.1486(0.0120)	0.2191(0.0060)	0.1263(0.0013)	0.4597(0.0045)	0.6961(0.0194)	Mean+USGAN	0.1724(0.0001)	0.0522(0.0000)	0.1795(0.0000)	0.1098(0.0003)	0.4290(0.0001)	0.1506(0.0000)	
SPIN+INF	0.2195(0.0046)	0.2106(0.0422)	0.2551(0.0428)	0.1531(0.0224)	0.4728(0.0194)	0.7629(0.1007)	Mean+SPIN	0.1733(0.0008)	0.0523(0.0000)	0.1803(0.0004)	0.1093(0.0003)	0.4343(0.0001)	0.1503(0.0005)	
ImputeFormer+INF	0.1776(0.0009)	0.1461(0.0013)	0.2085(0.0020)	0.1033(0.0070)	0.4197(0.0058)	0.6498(0.0046)	Mean+ImputeFormer	0.1688(0.0004)	0.0523(0.0001)	0.1795(0.0000)	0.1021(0.0002)	0.4231(0.0008)	0.1498(0.0000)	
								1 1						

- > Combining different imputation methods can generally benefit the down stream forecasting.
- As the number of segments in the acceleration method decreases, the advantage slightly decreases, but it is still maintained.

Future Work



> Other downstream work. Optimization?

Codes

香港大學 THE UNIVERSITY OF HONG KONG

> Energy Digitalization Laboratory

https://github.com/hkuedl/Task-Oriented-Imputation

