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● Work about embedding supervised classifiers in Poincaré disk model
● Three separate contributions:

○ Embed a single prediction in Poincaré disk model
○ Embed a decision tree DT (or a boosted ensemble)
○ Correct a downside of Poincaré disk model for near-border embeddings

● Code, etc: https://richardnock.github.io/

Summary

https://richardnock.github.io/


● In supervised learning, mapping posterior prediction → real-valued prediction 
done by (canonical) link 𝝍 of a loss; |𝝍|= confidence. Ex: log-loss

● 2D Poincaré disk     = model of hyperbolic geometry (convenient for tree-based 
representations), with distance to origin of            given by

● Suggests embedding a single prediction p by            with

Embed a single prediction

with and       p = posterior estimation

with

– Nock et al., “Hyperbolic Embeddings of Supervised Models”, NeurIPS’24



● (Supervised) benefits of Poincaré disk include: equidistant isolines with respect 
to prior p; center of disk is the worst possible prediction information-wise; the 
closer to the disk border, the higher the confidence

● A decision tree DT has priors at each node so 
it is natural to want to embed the full tree
(nodes + architecture)…

From single to many tree-based predictions (DT)

– Nock et al., “Hyperbolic Embeddings of Supervised Models”, NeurIPS’24



● Indeed, confidences are not monotonic from the root to a leaf in general…

A direct embedding of a DT is messy

❌

– Nock et al., “Hyperbolic Embeddings of Supervised Models”, NeurIPS’24



● … so we extract its monotonic subtree = Monotonic Decision Tree (MDT), where 
monotonicity is ensured. Then a modified Sarkar algorithm embeds full MDT

Nice direct embedding of a Monotonic DT

Green square 
 = positive class
Red disk 
 = negative class

– Nock et al., “Hyperbolic Embeddings of Supervised Models”, NeurIPS’24



● The best parts of a (M)DT embedding are close to the border. In addition to 
being poorly readable, numerical approximation issues can “push” the best 
confidences to the border, giving a false sense of optimal confidence

● We fix the issue by replacing Riemann summation 
(at the core of integrals, hence distances), 
by a tempered summation. “Stretches” visualization 
near border while keeping hyperbolicity

A known numerical issue with Poincaré disk model

?



● The best parts of a (M)DT embedding are close to the border. In addition to 
being poorly readable, numerical approximation issues can “push” the best 
confidences to the border, giving a false sense of optimal confidence

● We fix the issue by replacing Riemann summation 
(at the core core of integrals, hence distances), 
by a tempered summation. “Stretches” visualization 
near border while keeping hyperbolicity

A known numerical issue with Poincaré disk model

?

↪ Includes a generalization of Leibniz-Newton’s 
fundamental Theorem of calculus
↪ Simple extension of many properties of integration
↪ Gives interesting properties when applied to other 
models of hyperbolic geometry (e.g. Lorentz’) and 
beyond, to other integral based “distances” (Bregman 
divergences, f-divergences, IPMs, etc.). See paper.
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